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Abstract

This paper compares the out-of-sample predictive performance of different early
warning models for systemic banking crises using a sample of advanced economies
covering the past 45 years. We compare a benchmark logit approach to several
machine learning approaches recently proposed in the literature. We find that while
machine learning methods often attain a very high in-sample fit, they are outper-
formed by the logit approach in recursive out-of-sample evaluations. This result is
robust to the choice of performance metric, crisis definition, preference parameter,
and sample length, as well as to using different sets of variables and data transfor-
mations. Thus, our paper suggests that further enhancements to machine learning
early warning models are needed before they are able to offer a substantial value-
added for predicting systemic banking crises. Conventional logit models appear to
use the available information already fairly efficiently, and would for instance have
been able to predict the 2007/2008 financial crisis out-of-sample for many countries.
In line with economic intuition, these models identify credit expansions, asset price
booms and external imbalances as key predictors of systemic banking crises.
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1 Introduction

The global financial crisis has spurred a new wave of research on the importance of
a stable financial system for macroeconomic stability. New early warning models for
financial crises have been developed and are being employed by central banks to monitor
the stability of the financial system and to guide macroprudential policy (see, for example
European Central Bank, 2010, 2017; Drehmann and Juselius, 2014). Given the high costs
associated with financial crises, it is important to understand the circumstances under
which countries are likely to experience them and to provide accurate early warning
signals of these events. Failing to activate macroprudential policy tools in time might
lead to large costs for taxpayers, policymakers, and society as a whole, while issuing false
alarms might lead to costly over-regulation of the financial system.1

Recently, early warning models that rely on machine learning methods have been pro-
posed as an alternative to the traditionally employed methods in this field, such as the
signaling approach (e.g. Kaminsky and Reinhart, 1999; Knedlik and von Schweinitz, 2012)
and discrete choice (probit or logit) models (e.g. Frankel and Rose, 1996; Lo Duca and
Peltonen, 2013). For instance, Alessi and Detken (2018) as well as Tanaka, Kinkyo, and
Hamori (2016) have argued that random forests may improve early warning predictions in
comparison to the logit model and the signaling approach. Holopainen and Sarlin (2017)
have extended this argument to at least four other machine learning methods, namely ar-
tificial neural networks, support vector machines, k-nearest-neighbors, and decision trees.

Using a comprehensive dataset encompassing systemic banking crises for 15 advanced
economies over the past 45 years, we compare the out-of-sample prediction accuracies of
the logit model to four machine learning methods employed in the existing literature (ran-
dom forest, support vector machines, k-nearest neighbors, and decision trees). We come to
an interesting and perhaps surprising conclusion: simple logit models systematically out-
perform all machine learning methods considered under a large variety of circumstances.
In particular, we show that, while machine learning methods are able to achieve near
perfect in-sample fit, they perform worse than the logit model in recursive out-of-sample
prediction, and often even worse than a näıve benchmark. This result is remarkable,
as it cautions against the use of machine learning methods whose impressive in-sample
performance may backfire in the context of actual out-of-sample forecasting situations.

We subject our key result to a variety of tests. First, we document the superiority of
logit models for different combinations of leading indicator variables as well as for different
measures of prediction accuracy. Second, we perform standard robustness checks, such
as different data transformations, crisis databases, estimation periods, and parameteriza-
tions. Finally, we propose a bootstrap as a uniform approach to account for estimation
uncertainty, allowing us to establish statistically significant differences in performance
between methods. Moreover, we seek to determine ex ante optimal hyperparameters for
machine learning methods using a computationally intensive re-sampling procedure (a
specific variant of cross-validation). Even with this considerable effort, machine learning
methods still generate out-of-sample predictions which are inferior to those of the logit

1The costs of financial crises are documented, for instance, in Jordà, Schularick, and Taylor (2011), and
Laeven and Valencia (2013). An overview of internationally employed macroprudential policy tools can
be found in Lim, Costa, Columba, Kongsamut, Otani, Saiyid, Wezel, and Wu (2011), Cerutti, Claessens,
and Laeven (2017) or Claessens (2015).
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model.
We suggest an explanation for this result and compare our findings to other studies that

use machine learning methods for predicting financial crises. Machine learning methods
typically contain a much larger number of parameters than the logit model and are able
to flexibly approximate a large space of functions. This allows them to fit in-sample data
quite closely, but, at the same time, entails the risk of an overfit, and as a consequence
weak out-of-sample performance. We provide empirical and theoretical arguments to show
that this risk appears to materialize in the early warning context.

Our paper is related to the new wave of research on early warning models spurred by
the global financial crisis of 2008, as, for instance, in Alessi and Detken (2011); Rose and
Spiegel (2012); Gourinchas and Obstfeld (2012); Lo Duca and Peltonen (2013); Drehmann
and Juselius (2014). These papers construct different early warning models but do not
consider machine learning methods or horse races between different methods. Random
forests are introduced by Alessi and Detken (2018) in early warning models of systemic
banking crises at the country level, and by Tanaka et al. (2016) and Tanaka, Kinkyo, and
Hamori (2018) to predict failures at the level of individual banks. These papers evaluate
the predictive ability of their models using cross-validation. While cross-validation has
appealing features relative to more traditional out-of-sample evaluation, it also suffers
from serious drawbacks. As recognized by Holopainen and Sarlin (2017), cross-validation
estimates of performance can be inflated and biased towards more complex machine learn-
ing methods if (as in the early warning context) cross-sectional and serial correlation are
strong features of the data. Related to this, Neunhoeffer and Sternberg (2018) show that
performance of machine learning methods has been seriously over-estimated in published
articles of the political science literature as a result of using cross-validation for both
hyperparameter selection and model evaluation.

By contrast, Holopainen and Sarlin (2017) run out-of-sample comparisons of several
methods. Yet, they do so on a dataset containing a relatively small number of crisis
episodes. We build on their pioneering work, but refine it in several important ways,
namely regarding our careful construction of datasets and robustness checks, as well as
our bootstrap and hyperparameter selection schemes, taking into account cross-sectional
and serial dependence structures. We show that our out-of-sample results differ with
respect to their paper and provide an explanation for this difference.

Our paper complements recent assessments of machine learning methods in other fields,
for instance Neunhoeffer and Sternberg (2018) in the context of civil war prediction in
the political science literature. We thereby seek to contribute to a realistic assessment of
the strengths and limitations of the various methods, and to stimulate further research in
this area.

2 Methodology

2.1 Estimation

In line with the recent early warning literature (see Drehmann and Juselius, 2014; Alessi
and Detken, 2018; Holopainen and Sarlin, 2017) we estimate the probability of a financial
crisis starting between the next 5 to 12 quarters (conditional on not already being in an
acute crisis period) based on a set of potential early warning indicators. Details on this
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window forecasting approach and the resulting definition of the dependent variable for
the estimations are given in Appendix A.1.

We employ the following methods for estimating crisis probabilities: Logistic regres-
sion, k-nearest neighbors, decision trees, random forests, support vector machines and
neural networks. Appendix A.3 provides an overview of these methods as well as details
on their implementation. The selection of methods follows the previous literature (Berg
and Pattillo, 1999; Bussière and Fratzscher, 2006; Alessi and Detken, 2018; Holopainen
and Sarlin, 2017).

While binary choice models such as the logit are standard tools in the early warning
literature, machine learning methods are sometimes thought to allow for stronger non-
linearities and more flexible distributional assumptions, which might be beneficial when
forecasting extreme events such as systemic banking crises.2 We have a panel dataset with
observations for several countries at different points in time. In order to treat methods
uniformly and keep the setup parsimonious, we estimate each method on the same pooled
sample of observations. That is, observations are pooled in the cross-section and time
dimension and we do not include fixed effects in any of the models.

The machine learning methods come with hyperparameters that have to be set ex-
ogenously prior to estimation. For example, the k-nearest neighbor method has a single
exogenous hyperparameter, k, determining the number of neighbors to consider. Follow-
ing the standard in the literature (James, Witten, Hastie, and Tibshirani, 2013; Murphy,
2012), hyperparameters for all methods are chosen such that they optimize a performance
criterion (relative usefulness as described in Section 2.2) in a cross-validation exercise. We
have implemented a fairly sophisticated cross-validation algorithm taking into account the
cross-sectional and serial correlation present in our dataset (see Appendix A.4 for details).
As a consequence, cases where the performance of machine learning methods falls short of
the logit approach cannot be easily attributed to sub-optimal hyperparameters, but ap-
pear to be more deeply rooted in the given model. To ensure a strict separation between
in-sample and out-of-sample data, our cross-validation routine uses information before
the start of the out-of-sample window only (i.e. data before 2005Q3). A list of optimized
hyperparameters can be found in Table A.3 in the Appendix.

2.2 Evaluation of Predictions

For every observation, the early warning models estimate the probability of a crisis start-
ing in the following five to twelve quarters. These probabilities can be transformed into
binary early-warning signals using an (optimized) threshold. The performance of an early
warning model can therefore be evaluated either with respect to signals or probabilities.
We employ four different performance measures that are standard in the literature. Rel-
ative usefulness (Ur) uses a preference parameter µ to balance type-1 (missed crises) and
type-2 (false alarms) errors of binary signals. It is zero for a näıve forecast, and increases

2Other commonly mentioned advantages of machine learning methods relate to potential benefits on
large datasets (“big data”), and their ability to deal with a large number of potentially relevant variables.
In the context of early warning models however, datasets typically contain only a limited number of
observations. Moreover, the amount of variables can generally still be challenging for some machine
learning methods as can be seen in our discussion of methods’ properties in Appendix A.3 and in our
empirical results 4.2).
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for better forecasts. The F-measure (F1), as an alternative, relates the number of cor-
rectly predicted crises to the number of erroneous predictions, ignoring correctly predicted
tranquil periods (Powers, 2011). It is zero for forecasts where no crisis if correctly pre-
dicted, and increases for better forecasts. The area under the curve (AUC) measures the
relationship between type-1 and type-2 errors at all possible signalling thresholds. It is
0.5 for a näıve forecast, and also increases for better forecasts. The Brier probability score
is comparable to the RMSE of a linear regression, and thus lower values are preferable.
The AUC and BPS only depend on predicted probabilities, and are therefore independent
of additional (preference) parameters used to derive the threshold for relative usefulness
and the F-measure. Details on the transformation of crisis probabilities into signals, and
the four performance measures are given in Appendix A.2.

We deliberately do not use cross-validation to evaluate models. As Neunhoeffer and
Sternberg (2018) show, using cross-validation both for hyperparameter selection and
model evaluation may lead to serious over-estimation of model performance. Thus, we
use cross-validation only for hyperparameter selection and perform a classic out-of-sample
prediction experiment to evaluate models. To this end, we split the panel dataset into two
distinct parts: estimations (and hyperparameter selection) are performed on an in-sample
part (the training sample), while predictions and performance evaluations are derived on
an out-of-sample part (the test sample). For comparability with previous findings, we
follow Holopainen and Sarlin (2017) in setting our out-of-sample window to the period
between 2005Q3 and 2016Q4. This leads to a good balance between observations available
for estimation and for evaluating predictions, with approximately half of the pre-crisis ob-
servations contained in the in-sample part and half of the pre-crisis observations contained
in the out-of-sample part.

In most of the paper, we focus on recursive out-of-sample estimations where we pre-
dict the crisis probability quarter-by-quarter between 2005Q3 and 2016Q4 based on the
information that was available in each respective quarter.3 The performance measures
are then based on the recursive predictions for the out-of-sample part of the dataset. If,
instead, we are interested in in-sample performance, we use the same dataset for estima-
tion and performance evaluation, i.e. we set the test and training sample equal to the full
sample.

2.3 Bootstrap

Several of our estimation methods do not readily come with measures of estimation un-
certainty. Moreover, even if such measures can be derived, they are conditional on very
different (distributional) assumptions for different methods, making a comparison diffi-
cult. We solve this problem by bootstrapping, which provides a straightforward approach
for calculating measures of estimation uncertainty under identical assumptions for all esti-
mation methods. This allows us to test whether differences between model performances
are statistically significant.

3The definition of the early warning window is forward-looking. In order to account for that, all
observations where the dependent variable is yet unknown given information at time t have to be excluded
from the training sample. That is, for a forecast made in 2006Q1 we can only estimate the model
on observations until 2003Q1 (unless a crisis occurs between 2003Q1 and 2006Q1, in which case the
realization of the binary early-warning variable is known for some additional periods).
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Bootstrapped measures of estimation uncertainty can be derived from the dispersion
of estimates across random variations of the original dataset. These measures of estima-
tion uncertainty are conditional on the statistical properties of the bootstrap datasets.
Therefore, it is important to construct bootstrap datasets that preserve those statistical
properties of the original dataset that are likely to affect the precision of estimates. In
our case, autocorrelation and cross-sectional correlation are strong features of the data.
Based on El-Shagi, Knedlik, and von Schweinitz (2013) and Holopainen and Sarlin (2017),
we use a panel-block-bootstrap to account for these properties, as described in Appendix
A.5 in more detail.

3 Data

3.1 Crisis Variable

We use the database for systemic banking crises established by the European System
of Central Banks (ESCB) and the European Systemic Risk Board (ESRB) covering Eu-
ropean countries from 1970 to 2016 (Lo Duca, Koban, Basten, Bengtsson, Klaus, Kus-
mierczyk, Lang, Detken, and Peltonen, 2017). This latest database refines previous crisis
databases, both with respect to the identification of events and their timing. Crises
are identified by the following two-step procedure. In a first step, “systemic financial
stress events” are identified using the quantitative methodology of Duprey, Klaus, and
Peltonen (2017). These financial stress events together with additional crises identified
in previous databases (Laeven and Valencia, 2013; Babeckỳ, Havránek, Matějŭ, Rusnák,
Šmı́dková, and Vaš́ıček, 2014; Detken, Weeken, Alessi, Bonfim, Boucinha, Frontczak,
Giordana, Giese, Jahn, Kakes, Klaus, Lang, Puzanova, and Welz, 2014) form a list of
potential crisis events. In the second step, this list of potential crises is checked against a
set of qualitative criteria defining systemic financial crises (see Lo Duca et al., 2017, for
details).

Following Drehmann and Juselius (2014), we focus on systemic banking crises with
at least partially domestic origins.4 Furthermore, we expand the coverage of the crisis
database to include two additional (non-European) advanced countries with important
crisis experience, namely Japan and the United States.5 As a result, our dataset covers
all of the “big five” crises identified by Reinhart and Rogoff (2008). The full list of crisis
episodes used in our analysis after taking into account the availability of the explanatory
variables may be found in Table B.1 in the Appendix. It includes 19 crises for European
countries (of which 11 take place before 2008) as well as three crisis events in the United
States and Japan (of which two take place before 2008). The majority of countries are
included for a time period starting in the early to mid-1970s until the beginning of 2016.

As a robustness check we also run an estimation with crisis dates taken from the
most recent version of the Laeven and Valencia (2018) database. Their database has the

4Focusing on crises with at least partially domestic origins makes sense, as our modeling framework
(where domestic variables determine the crisis probability of each country) does not allow for cross-
country spillover effects. That is, we know a priori that these events are largely unforeseeable given the
present modeling framework.

5For these countries, we use the crisis episodes identified by Laeven and Valencia (2018) adapting start
and end dates such that they are consistent with the definition in our core database.
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advantage of being somewhat more agnostic in its definition of crisis events. Yet, the
most recent European crisis database, which we use for our core results, provides a more
comprehensive and more precise account of the crises in the European countries of our
sample.

3.2 Early Warning Indicators

We use a total of ten explanatory variables, capturing key economic channels affecting the
likelihood of systemic banking crises as identified in the literature, while balancing data
availability.6 The channels we focus on are (i) asset prices, namely house prices and equity
prices, (ii) credit developments (total credit to the private non-financial sector relative to
GDP), (iii) the macroeconomic environment, as measured by GDP, gross fixed capital
formation relative to GDP, inflation and three-month interest rates, and (iv) external
and global imbalances given by real effective exchange rates, the current account balance
relative to GDP and oil prices. All variables are expressed either in real terms or as a
share of GDP.

For our model specifications, we use four different combinations of employed variables
(also referred to as datasets). Dataset (iv) uses all of the available variables. In addition,
we specify smaller models using subsets of variables in order to illustrate the relative
performance of methods across datasets of varying complexity and information content.
While reduced information content should generally reduce models’ predictive ability, this
may in some cases be offset by the gains from estimating less complex models. Datasets
(i)-(iii) are mutually exclusive selections of indicators based on the different sources of
vulnerabilities: (i) asset prices and credit developments, (ii) macroeconomic environment,
and (iii) external and global imbalances. A list of the variables used in each dataset can
be found in Table B.6. In order to guarantee comparability across the different datasets,
we use the same sample for all datasets.

These a priori specified, economically motivated datasets have been chosen to allow
for an economic interpretation of the information contained in each dataset. Moreover,
by limiting ourselves to a priori specified, economically motivated variables and transfor-
mations, we seek to limit potential problems of data-mining. As Inoue and Kilian (2005)
explain, when trying many variables and specifications, one is likely to find “spurious
rejections of the no-predictability null and thus overfitting relative to the true model”.
Thus, avoiding data-mining is important for a realistic assessment of the true out-of-
sample performance of early warning models. This is especially critical for early-warning
models as policy-relevant analysis tools, as an overestimation of their accuracy might lead
to a wrong sense of security.

Several of our potential predictor variables naturally contain a time trend (the ex-
ception being inflation, money market rates and current account to GDP), which needs
to be removed prior to estimation. We focus on two of the most frequently employed
approaches in the early warning literature: A Hodrick-Prescott (HP) filtering approach
for our benchmark results and a growth rates approach for robustness.7

6Appendix B explains the economic intuition motivating the choice of variables for each channel based
on previous literature, describes data transformations and reports summary statistics.

7To remove extreme outliers, we furthermore winsorize the data at the 1%- and 99%-quantile.
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4 Results

4.1 In-sample Predictive Performance across Methods

Table 1 reports the in-sample relative usefulness of the six different methods (in rows) for
four different sets of explanatory variables (in columns). The best performance on each
dataset is indicated in bold. Significance stars (obtained from our bootstrap procedure) in-
dicate whether the respective usefulness is significantly below that of the best-performing
method on the same dataset.

In line with the literature (Alessi and Detken, 2018; Holopainen and Sarlin, 2017;
Tanaka et al., 2016), machine learning methods such as knn and random forest always at-
tain substantially higher in-sample relative usefulness than the corresponding logit model.
Random forests achieve the best in-sample performance on all datasets, with knn close on
their tails on dataset 2 (macroeconomic environment) and 4 (all variables). The inferiority
of the logit model’s in-sample performance relative to the best model on every dataset is
statistically and economically significant. As Table C.1 in the Appendix shows, these find-
ings are robust to using alternative measures of prediction performance. Moreover, the fit
of knn and random forest is often close to perfect, with relative usefulness, F-measure and
area under the curve (AUC) being close to one.8 The other machine learning methods,
trees, support vector machines and neural networks, are in general more in line with the
logit results.

4.2 Out-of-sample Predictive Performance across Methods

In line with the standard in the empirical literature, the focus of our evaluation is on
recursive out-of-sample performance rather than in-sample performance. For every point
in time from 2005Q3 until the end of our sample in 2016Q4, we estimate the model
recursively, strictly using only the information available at that time. We thus obtain
predictions for approximately 300 out-of-sample observations, including 60 pre-crisis pe-
riods. These predictions are then used to calculate out-of-sample performance measures.

Table 2 shows the out-of-sample relative usefulness of six different methods (in rows)
for four different sets of explanatory variables (in columns). The table shows that the
logit model almost always outperforms the machine learning methods. The only exception
is the dataset based on macroeconomic variables. However, in that case the relative
usefulness is negative for all methods.9 That is, a näıve forecast would be better than
using any of the considered models. Table C.2 in the Appendix shows that the superiority
of the logit model is confirmed by the other three performance measures, namely the area
under the curve (AUC) and Brier probability score (BPS) – again, with an exception on
the macroeconomic dataset for the F-measure and AUC. The difference of performance
measures between the logit model and machine learning methods is statistically significant

8Table C.1 also shows that the zero usefulness of trees on dataset 2 and 3 is due to a degenerate
tree that always predicts a crisis. This happens because the available variables are not very informative
relative to the required tree complexity. The optimal tree (according to the tree’s internal cost function)
then consists of the unconditional forecast. By definition, relative usefulness and AUC will be zero and
0.5, respectively.

9This can happen in out-of-sample predictions where the performance measure uses the ex-post knowl-
edge on actual crisis occurrence – information that is not available at the time the forecast is made.
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Table 1: In-sample relative usefulness

(1) (2) (3) (4)
Credit/Asset Prices Macro External All

logit 0.347** 0.202*** 0.390* 0.511*
[ 0.185, 0.440] [ 0.018, 0.236] [ 0.243, 0.422] [ 0.208, 0.561]

trees 0.432** 0.000*** 0.000** 0.674*
[ 0.158, 0.601] [-0.031, 0.216] [ 0.000, 0.410] [ 0.230, 0.711]

knn 0.693* 0.965 0.685 0.955
[ 0.353, 0.693] [ 0.265, 0.965] [ 0.302, 0.685] [ 0.370, 0.955]

rf 0.966 0.966 1.000 0.992
[ 0.411, 0.966] [ 0.240, 0.966] [ 0.299, 1.000] [ 0.347, 0.992]

svm 0.362** 0.481** 0.000** 0.784
[-0.006, 0.483] [ 0.129, 0.489] [-0.258, 0.320] [ 0.334, 0.784]

nen 0.456** 0.266*** 0.377* 0.764
[ 0.201, 0.503] [ 0.042, 0.294] [ 0.263, 0.419] [ 0.338, 0.793]

Note: Highest usefulness on each dataset in bold. Stars indicate whether the respective usefulness
is significantly below the best performance on the same dataset (∗∗∗/∗∗/∗ for the 1%/5%/10% level).
Numbers in brackets indicate 90% confidence bands.

Table 2: Out-of-sample relative usefulness

(1) (2) (3) (4)
Credit/Asset Prices Macro External All

logit 0.368 -0.236 0.438 0.605
[ 0.143, 0.431] [-0.386, -0.036] [ 0.309, 0.563] [ 0.222, 0.605]

trees 0.201 -0.605 0.390*** 0.126***
[ 0.084, 0.317] [-0.605, -0.087] [ 0.072, 0.390] [-0.037, 0.313]

knn 0.247 -0.087 0.293*** -0.062***
[ 0.088, 0.384] [-0.137, 0.034] [ 0.133, 0.417] [-0.166, 0.042]

rf 0.246 -0.245 0.138*** -0.003***
[ 0.129, 0.350] [-0.323, -0.132] [ 0.055, 0.283] [-0.141, 0.146]

svm 0.218* -0.015 0.202** -0.065***
[ 0.018, 0.326] [-0.257, 0.060] [ 0.043, 0.409] [-0.173, 0.130]

nen 0.251 -0.349 0.434 0.092**
[ 0.080, 0.451] [-0.382, -0.048] [ 0.322, 0.551] [-0.041, 0.250]

Note: Highest usefulness on each dataset in bold. Stars indicate if the respective usefulness is significantly
below the best performance on the same dataset (∗∗∗/∗∗/∗ for the 1%/5%/10% level). Numbers in brackets
indicate 90% confidence bands.
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on datasets 3 (external variables) and 4 (all variables). Neural networks are an exception
because they are only insignificantly worse in terms of relative usefulness on dataset 3, and
in terms of the F-measure and BPS on datasets 3 and 4. On dataset 1 (credit and asset
prices), logit models perform significantly better than trees and support vector machines,
while the difference to other machine learning methods is insignificant. Taken together,
a first impression is that the logit is best suited for recursive out-of-sample predictions,
with neural networks being the closest competitor.

4.3 Robustness

In this section, we assess the degree to which our results are robust to four key variations
of the modeling setup. These variations concern the choice of the preference parameter
for relative usefulness, data transformation, sample length, and the crisis database. We
also test an extreme variation of out-of-sample forecasting with one-off-splits.

Preference parameter: First of all, we make sure that our results do not hinge on
the choice of loss function preference parameter (see the detailed description of relative
usefulness in Appendix A). While AUC and BPS are preference-independent measures,
the preference parameter enters into the computation of relative usefulness via the loss
function, which is used to evaluate forecasts and to compute optimal thresholds. Our
benchmark value for the preference parameter, µ = 0.5, represents a balanced trade-off
between type-1 (missed crises) and type-2 errors (false alarms). As we use the same
threshold for both the relative usefulness and the F-measure, the preference parameter
implicitly also enters the F-measure.

It is easily conceivable that missing a crisis may be more costly than issuing a false
alarm. In this case, more weight should be given to type-1 errors. Therefore, we con-
duct a robustness check for a preference parameter of µ = 0.75 which assigns much more
weight to type-1 errors. We re-estimate all models including hyperparameters given this
new preference parameter and report results in Table C.3 in the Appendix. We find that
relative usefulness drops strongly for all methods, often to negative values. While the
logit model still has a positive relative usefulness on all datasets but the second, machine
learning methods seem to deteriorate more strongly, for instance on datasets (4) and (1).
The F-measure (which does not change systematically) indicates that the logit outper-
forms the machine learning methods on datasets (2) and (4), while it is only insignificantly
worse than the best method on the other two datasets. The change in preference param-
eters also affects hyperparameters of machine learning methods (because they are based
on relative usefulness). As a result, the AUC drops. In many cases, the AUC now takes
on values below 0.5. That is, not only the signals derived at “optimal thresholds” but the
whole probability predictions for models like knn.4 are de facto misleading predictions.
For the AUC and BPS, logit is the best method on all datasets except the second, where
it is insignificantly worse than neural networks or support vector machines, respectively.
As a result, logit continues to outperform machine learning methods, and the logit with
all variables remains the “best” overall model.

Data transformation: As a second robustness test, we check the extent to which
our results hinge on the choice of using HP filter gaps for removing the trend in our
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explanatory variables. To this end, we replace the HP filter gaps by simple growth rates,
where lags used to compute growth rates differentiate between business cycle and financial
cycle variables. The results of this robustness check are shown in Table C.4. Looking at
relative usefulness, we see that some of the machine learning models perform better when
using growth rates rather than HP filter gaps. By contrast, all four logit specifications have
somewhat lower relative usefulness, F-measure and higher BPS than before. Depending
on the performance metric, knn, random forests and even trees may outperform logit
on datasets (1) and (2). Across all models considered, the logit model with all variables
(logit.4) remains the best model according to relative usefulness and BPS, closely followed
by nen.4, which also outperforms logit.4 in terms of AUC.

Sample length: A third important test concerns the robustness of our results relative to
variations of our sample. Specifically, we consider a robustness check, where we cut off the
first ten years of our dataset, amounting to approximately one-sixth of our observations.
Financial repression during the 1970s may have affected the behavior of our explanatory
variables and their impact on the probability of future financial crises. More generally, the
underlying data-generating process may be time-varying, suggesting a trade-off between
sample length and sample homogeneity.

Table C.5 presents results when restricting our sample to exclude all observations prior
to 1980Q1. For the logit model, we find that out-of-sample prediction performance based
on this smaller set of information is lower than when using the full dataset. Thus, the
trade-off between sample length and sample homogeneity appears to be tilted in favor
of sample length. The relative ordering of machine learning methods compared with the
logit method is unchanged. Thus, we conclude that, while sample length appears to be
important, our main finding regarding relative prediction performance between methods
is robust to the change in the sample. We also note that this robustness appears to be
driven by the robustness of the logit method, while machine learning methods sometimes
react quite strongly to this moderate change in the sample.

Crisis database: In our fourth robustness check we replace the ESCB/ESRB crisis
database by the well-known database of Laeven and Valencia (2018). Compared to the
baseline crisis database, this database has fewer pre-crisis periods in the training sample,
and a higher share of pre-crisis periods in the test sample. Results are shown in table
C.6. It turns out that changing the dependent variable of our models induces big changes
in the results. Looking at the different performance metrics, there are winners and losers
across all datasets and methods. However, results for logit.4 and logit.3 remain robust
to this change. As a consequence, they continue to outperform their machine learning
competitors and logit.4 remains the best overall model according to relative usefulness.
However, estimation uncertainty is now much larger: even for logit.4, the confidence band
around the point estimate of relative usefulness includes negative values. Therefore, only
very few machine learning methods are significantly worse than their corresponding logit
model. While the F-measure indicates similar results, performances of BPS and AUC are
more mixed. Neural networks have the highest AUC for all datasets but the second, while
support vector machines perform well in terms of BPS on datasets 1 and 2. Overall, the
highest usefulness is achieved by the logit on datasets 1 and 4, the best AUC by neural
networks on dataset 4, and the lowest BPS by logit on dataset 4. Overall, the logit.4 still
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seems to be preferable.

One-off splits: As an alternative to recursive estimation, we also explore one-off splits,
where an estimation on observations until 2005Q2 is used to predict probabilities after
that (results reported in Table C.7) or the other way around (see Table C.8). Different to
recursive forecasts, these exercises do not take advantage of the most recent developments
of data to perform out-of-sample predictions. Instead (at the extreme), crisis probabilities
in the 1970’s are backcasted based on an estimation on data between 2005Q3 and 2016Q2.
This is a very hard task, especially since the pre-crisis probability in the later subsample
is considerably larger than in the early parts of the sample. Therefore, it comes at no
surprise that the optimal thresholds for the backcasting exercise are mostly much higher
than for the forecasting exercise. In the backcasting case, we should also be clear that we
are predicting more than 83% of the dataset based on the remaining 17% of observations.
Yet, even in these extreme scenarios relative usefulness remains mostly positive. The
performance of logit models is mostly at the upper end of all methods. However, we have
considerable estimation uncertainty for the reasons mentioned above. Therefore, we find
differences between methods to be mostly insignificant.

Overall, our robustness checks confirm the finding that a logit model using all variables
offers the best predictive performance among all models considered. Moreover, we saw
that changes to model specifications, as those considered in this section, can induce sub-
stantial changes to some models’ performance. Given this, we see the robustness of the
logit.4 (and logit.3) model across specifications, as an additional feature of these models.
By contrast, performance of machine learning methods is substantially less robust.

4.4 Interpretation and Discussion

A comparison of the performance of in-sample and recursive out-of-sample estimations
gives an indication as to why machine learning methods do not outperform the logit
approach in this application. Figure 1 displays the relationship between in-sample and
recursive out-of-sample performance across models based on our benchmark results shown
in Tables 1 and 2. A striking result is that many of the machine learning models (in-
cluding all random forest models) achieve a near-perfect in-sample fit (relative usefulness
close to its theoretical maximum of 1), but, at the same time, show much lower out-of-
sample performance. This suggests that overfit may be a major issue for at least some of
the models. Moreover, even for those machine learning models where in-sample fit is not
perfect, their out-of-sample performance is often markedly below their in-sample perfor-
mance. By contrast, among logit models this is only the case for logit.2, which we saw is
a special case of negative relative usefulness for all methods on this dataset. Consistent
with the results in the previous section, neural networks emerge as the closest competitors
to logit models also with regards to the consistency between in-sample and out-of-sample
prediction performance. Figures C.2 through C.5 in the Appendix show that this pattern
holds true more generally across all robustness checks.

The argument made above is not restricted to relative usefulness. We can also look
receiver-operator characteristics in Figure 2, divided into four subplots for the four differ-
ent datasets used above. The AUC is defined as the integral of the area under the ROC
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Figure 1: Relative usefulness of in- and out-of-sample estimation, by model.
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curve.10 Thus, the figure visualizes the relation of AUC-values presented in Table C.2 in
the Appendix. For datasets three and four, the ROC curve of the logit model is (nearly)
everywhere above the curves of other models. For dataset one, the logit curve is above the
other methods for comparably low thresholds that lead to more (true and false) signals.
In total, the AUC of the logit model on the first dataset is higher than for other methods,
albeit not always significantly.

A comparison with the ROC curve of the in-sample estimations (shown in Figure C.1 in
the Appendix) confirms a finding discussed above for relative usefulness: machine-learning
methods with high in-sample fit tend to have a lower out-of-sample fit. Random forests,
k-nearest neighbours, support vector machines and trees all loose substantial recursive
out-of-sample performance. Only neural networks manage to stay close to their in-sample
performance, especially and as comparable to the logit model for datasets 1,3 and 4.

In addition to the empirical evidence in figure 1, a theoretical argument pointing to
overfit (relative to the true model) can be made. As a thought experiment, suppose we

10If the ROC curve coincides with the diagonal, the AUC would be 0.5. Also, the rate of false positives
and false negatives would be identical at every threshold, and it would not be possible to derive an
informative signal from the prediction. As ROC curves move closer to the upper left corner (i.e. a point
where both the false positive and false negative rates are zero), the prediction becomes more and more
informative. This is for example the case in a comparison of logit.4 to other methods. For ROC curves
below the diagonal, the signal is counterinformative. This is for example the case for the estimations
on the second dataset. If we knew of this in advance, this fact could be exploited: high predicted
probabilities would be seen as a sign of no crisis, while policymakers would worry at low predicted
probabilities. However, note that we show the ROC curve for recursive out-of-sample predictions, where
we do not have this knowledge.
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Figure 2: Receiver-operator characteristics for baseline recursive out-of-sample estima-
tions, by model.
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knew the true data generating process (DGP) and we had a model (and data) at hand
that would give us for each observation the true conditional probability of a crisis. Even in
this case, the prediction error would still be positive (except in the degenerate case where
conditional crisis probabilities could only be either 1 or zero). For that reason, even with a
perfect model, we would not expect relative usefulness to approach its maximum value of
1, but rather to converge (both in-sample and out-of-sample) to a DGP specific maximum
between 0 and 1 as the sample size increases.11 This can formally be seen in Table 5 of
Boissay, Collard, and Smets (2016). They present a DSGE model generating credit boom
driven crises, and run an early warning exercise on simulated data from their model. It
turns out that crisis prediction using the true model-implied conditional probability still
leads to considerable error rates (around 1/3 missed crises). Their results also show that
a logit model estimated on binary crisis realizations is able to converge to a performance
similar to that of the true model. The remaining error rates under the true model reflect
the fact that crises can only be predicted in probability and not with certainty. In other
words, crises are driven by a predictable component, captured by the true model, and a
substantial unpredictable component (given the observables), which cannot be forecasted
by any model.

To the extent that a logit model is already able to closely approximate the true model
(as in Boissay et al. (2016)), it will not be possible to substantially outperform this
model. This implies that when machine learning methods fit the data beyond (or below)
the predictable component, this comes at the cost of worse performance in the recursive
out-of-sample estimation. This may be an issue even for those machine learning models
where in-sample fit is not perfect. Theoretically, the hyperparameters of the machine
learning methods should provide some safeguard against overfit. However, despite de-
voting considerable effort to the calibration of these hyperparameters via a sophisticated
cross-validation procedure (see Appendix A.4), the overfit still persists for many of the
considered models. In sum, it appears that logit models naturally limit the amount of
overfit, while being sufficiently flexible in their approximation of the data generating pro-
cess.

The conclusion from our out-of-sample forecast comparison is different than that of
Alessi and Detken (2018) and Tanaka et al. (2016), who argue that a random forest has
a better prediction performance than a logit model in an early warning setting. However,
Alessi and Detken (2018) do not run an out-of-sample comparison of the two methods.
Their argument is rather based on results from k-fold-cross-validation, where they find
some differences between the AUC of one random forest specification (AUC = 0.94) and
two logit specifications (AUC = 0.84, and 0.93 respectively). Setting aside the question of
whether this difference is statistically significant, the high levels of AUC (close to the max-
imum of 1) suggest that the cross-validation procedure may provide an inflated estimate
of the performances of these methods. In fact, cross-validation estimates often appear to
be closer to in-sample performance than to out-of-sample performance. The tendency of
cross-validation to provide inflated estimates of performance, particularly in the presence
of cross-sectional and serial correlation, has also been recognized by Holopainen and Sarlin

11As a simple illustration, suppose for example that in 50% of the cases the true crisis probability was
80%, while in 50% of the cases, it was 20%, and that our signaling threshold was 50%. Then, even when
knowing the true model, we would still have a false positive rate of 20% and a false negative rate of 20%,
leading to a relative usefulness of only 60% (assuming µ = 0.5).
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(2017). As a consequence, these estimates are likely to be biased towards (more complex)
machine learning methods, given their above-mentioned tendency to overfit in-sample
data. Another important point has been noted by Neunhoeffer and Sternberg (2018)
based on an example of civil war prediction from the political science literature. They
show that performance of machine learning methods has been seriously over-estimated,
in studies using cross-validation for both hyperparameter selection and model evaluation.
Tanaka et al. (2016) find somewhat more pronounced differences between logit and ran-
dom forest performance for a bank-level early warning model. However, they also focus
on cross-validation estimates of performance. As we do not cover bank-level early warning
in our analysis, we cannot make statements about recursive out-of-sample performances
in their setup.

The importance of conducting model comparisons via out-of-sample experiments has
also been advocated by Holopainen and Sarlin (2017). However, in their out-of-sample
forecasting exercise, logit models are outperformed by machine learning methods (except
for trees). We conjecture that differences in the employed training sample are a key
driver of the contrasting results. In their application, more than 95% of the pre-crisis
periods are located in the recursive out-of-sample period and are thus unavailable for
the first recursive estimations. This means that their model estimations are driven by a
few influential pre-crisis observations in their training sample, such that the selection of
these observations is a critical determinant of their out-of-sample results. By contrast,
our broader data basis enables us to use nearly 60% of all pre-crisis periods in the first
recursive estimation, mimicking more closely actual out-of-sample prediction tasks. The
different sample appears to be the most important explanation for our differing results.

As a final word regarding interpretation, we want to make clear that while we think it
is important to establish a robust and valid out-of-sample prediction exercise, we do not
want to over-interpret its results. After all, our results hold for the given finite dataset
at hand. In particular, our out-of-sample window is naturally dominated by the great
financial crisis of 2007-2008. Moreover, we cannot fully exclude the possibility that some
other (potentially more sophisticated) modeling approach is able to outperform the logit
model, or that machine learning methods may be preferable on other (possibly larger)
datasets. However, we think that we have established that the logit model is surprisingly
hard to beat, in line with findings in the forecasting literature more generally, that simple
forecasting models often outperform more complex models. We have provided theoretical
and empirical arguments, as well as a discussion of the literature, suggesting systematic
issues related to overfit driving this result. Further research is needed, to gain a more
complete understanding of the conditions under which machine learning methods can be
successfully applied, in general, and in particular to early warning models of financial
crises. As neural networks emerge as the most promising machine learning method in
our analysis, future research could investigate whether recent advances in deep neural
networks (LeCun, Bengio, and Hinton, 2015) can be successfully applied to the prediction
of financial crises. Our results suggest that controlling the risk of overfitting may be key
for the success of these highly complex neural network models.
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5 Conclusion

This paper has presented an analysis of early warning models for systemic banking crises,
based on a dataset covering 15 advanced countries over the period 1970-2016. We assess
how different methods – a benchmark logit approach and several machine learning meth-
ods – perform in a quasi real-time out-of-sample forecasting experiment. It turns out that
the logit approach is surprisingly hard to beat, generally leading to lower out-of-sample
prediction errors than the machine learning methods. This result holds under different
performance measures and different selections of variables, and is robust to alternative
choices of crisis variable, variable transformation, sample length or loss function preference
parameter.

Our interpretation of this result is that a strong in-sample fit of machine learning
methods should not necessarily be taken as an indication of strong out-of-sample predic-
tion performance, since it could alternatively be a sign of overfitting. In addition, the
stability of these methods’ performances across variations of the setup appears to be less
pronounced than that of the logit model.

These results suggest that performance of machine learning methods in real-world out-
of-sample prediction situations cannot be taken for granted. Instead, the circumstances
under which these methods offer clear advantages as well as potential modifications for
improving their stability and performance in early warning applications need further in-
vestigation. Neural networks emerge as the most promising machine learning method in
our analysis. Future research could therefore investigate whether recent advances in deep
neural networks can be successfully applied to the prediction of financial crises.
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Schüler, Y. S., P. Hiebert, and T. A. Peltonen (2015). Characterising the Financial Cycle:
a Multivariate and Time-Varying Approach. ECB Working Paper 1846.

Shalev-Shwartz, S. and S. Ben-David (2014). Understanding Machine Learning: from
Theory to Algorithms. Cambridge University Press.

Tanaka, K., T. Kinkyo, and S. Hamori (2016). Random Forests-Based Early Warning
System for Bank Failures. Economics Letters 148, 118–121.

Tanaka, K., T. Kinkyo, and S. Hamori (2018). Financial hazard map: Financial vul-
nerability predicted by a ran-dom forests classification model. Sustainability 10 (5),
1530.

20



6 Appendix A: Methodology

A.1 Definition of Dependent Variable

Early warning models (typically) perform window forecasts of crisis probabilities and use
thresholds to derive binary signals from these probabilities. The rationale behind this
approach has two aspects. First, window forecasts are used since it is hard to predict
the exact quarterly start date of a crisis, which may be driven to a large extent by
unforecastable shocks. However, recurring patterns before crises may still be informative
about their likelihood of occurrence during a given time interval. Thus, window forecasts
of the probability of a systemic banking crisis can be used to reflect potential buildups of
vulnerabilities, which might require for instance the activation of macroprudential policy
measures. Second, converting probabilities into clear signals (taking into account the
policymaker’s preferences) helps to inform policymakers’ ultimate decision on whether and
when to take action. Moreover, it allows for a straightforward evaluation of predictions
in terms of correct or incorrect signals.

To implement these ideas, we follow the literature and define the dependent variable
for our estimations as follows. Starting from a crisis database, where Ct,n is 1 if a crisis
was ongoing in country n at time t and zero otherwise, we define another binary variable
C̄t,n as our dependent variable. This dependent variable C̄t,n is set to one during early
warning windows between h1 and h2 periods before a crisis (pre-crisis periods) and zero
for observations that are not followed by a crisis within the next h2 quarters (tranquil
periods).

The resulting gap of length h1−1 between early warning windows and crises is excluded
from the estimation, as these periods can neither be classified as being in an early warning
window, nor as being tranquil periods. Moreover, it is standard to exclude periods where
a country is already in a crisis (crisis periods). The reason for excluding crisis periods is
that the extreme imbalances during these periods are typically due to being in a crisis
(which is assumed to be known), instead of reflecting the buildup of imbalances prior to
a crisis.12

The timing of the early warning window is chosen to fulfill two criteria. First, the gap
h1 ≥ 0 between the window and the start of the crisis is chosen to allow for policy action.
Second, the window needs to be sufficiently close to the predicted crisis for economic
variables to show informative developments. Following the literature, we set the limits of
early warning windows to h1 = 5 and h2 = 12 quarters (see Drehmann and Juselius, 2014;
Alessi and Detken, 2018; Holopainen and Sarlin, 2017). This allows at least one year for
policy measures to become effective and to issue warnings up to three years before a crisis.

In sum, this leads to the following definition of the dependent variable:

C̄t,n =


0 , if Ct+h,n = 0, for all h ∈ {0, . . . , h2}
1 , if Ct+h,n = 1, for some h ∈ {h1, . . . , h2} and

Ct+h,n = 0, for all h ∈ {0, . . . , h1 − 1}
NA , otherwise.

(1)

12We do not exclude additional periods after a crisis, as crises in our database are defined such that
they already account for the post-crisis bias discussed in Bussière and Fratzscher (2006).
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We thus estimate the probability of a crisis between the next h1 = 5 to h2 = 12
quarters, conditional on not already being in an acute crisis period. To do this, the
binary dependent variable C̄ is linked to a set of early warning indicators X using different
modeling choices. Each model is estimated and then used to predict the probability of
being in an early warning window at time t in country n conditional on the observables
X, P (C̄t,n|Xt,n).

A.2 Evaluation of Early Warning Models

To inform decision-making, the estimated probabilities may be mapped into binary signals.
Using a threshold τ , the signal is set to one if the probability exceeds τ and to zero
otherwise. These signals or their absence will ex post turn out as right or wrong, and
can be classified into true positives, false positives, true negatives, or false negatives as
indicated in Table A.1. False negatives FN (also called type-1 errors) are observations
where no signal is given during an early warning window (missed crises), while false
positives FP (type-2 errors) result from observations where a signal is given outside of
an early warning window (false alarms). A higher classification threshold τ implies fewer
signals, reducing both true and false positives. Converting probabilities into signals via a
threshold thus entails a trade-off between type-1 errors (missed crises) and type-2 errors
(false alarms). Selecting the optimal threshold generally depends on the loss function of
the forecast user. The current standard is to choose the classification threshold τ such
that it maximizes the relative usefulness function of Alessi and Detken (2011), which
weighs errors (as a share of the respective actual class) by a parameter µ representing the
forecast user’s preferences.13

Table A.1: A contingency matrix.

Actual class C̄
Pre-crisis period Tranquil period

Predicted class S
Signal

Correct call False alarm
True positive (TP) False positive (FP)

No signal
Missed crisis Correct silence

False negative (FN) True negative (TN)

Note: This contingency matrix follows Holopainen and Sarlin (2017).

The relative usefulness (Ur) as a function of the preference parameter µ sets the loss of
misspecification, L(µ) = µ FN

FN+TP
+(1−µ) FP

FP+TN
, in relation to the loss of a näıve decision

rule, min(µ, 1 − µ), resulting from either always or never signaling a crisis depending on
the preference parameter (Alessi and Detken, 2011):14

Ur(µ) = 1− L(µ)

min(µ, 1− µ)

13In an out-of-sample experiment, it is important to choose the threshold using in-sample information
only and not by maximizing out-of-sample performance, which is a priori unknown to the forecaster.

14An alternative usefulness function proposed by Sarlin (2013) was shown to be equivalent under a
constant unconditional crisis probability (Sarlin and von Schweinitz, 2017).
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This implies a maximum relative usefulness of one, if L(µ) = 0, and a usefulness of zero, if
L(µ) = min(µ, 1− µ). A usefulness above (below) zero therefore means that the model is
more (less) informative than the näıve decision rule. We use a standard choice of µ = 0.5
for our baseline results, thus weighting the two types of errors equally.

The F-measure uses the same contingency matrix as the relative usefulness. For a
given signaling threshold, it relates true positives to the mean of the number of “Signals”
and pre-crisis periods,15

F1 =
TP

TP + (FP+FN)
2

.

In other words, the bigger the ratio of correctly predicted crises (TP ) relative to erroneous
predictions (FP + FN) is, the bigger is F1. A perfect prediction implies a F-measure of
1. A prediction without a single true positive results in F1 = 0. The fact that the number
of correctly predicted tranquil periods does not enter the formula, introduces a bias into
the F-measure (Powers, 2011). That is, it disregards the benefit an early-warning model
generates in correctly predicting periods where no costly crisis-prevention mechanisms
need to be enacted.

In contrast to relative usefulness and the F-measure, the two other performance mea-
sures do not rely on an additional preference parameter. The Brier probability score
(Brier, 1950; Diebold and Rudebusch, 1989; Knedlik and von Schweinitz, 2012) operates
directly on probabilities instead of signals. It is simply given by the mean of the squared
differences between predicted probabilities and actual outcomes (i.e. a special case of
mean squared forecast error for binary dependent variables). By contrast, the area under
the (receiver-operator characteristic) curve (AUC or AUROC) does operate on signals,
but aggregates type-1 errors and type-2 errors over all possible classification thresholds τ
(Janes, Longton, and Pepe, 2009; Drehmann and Juselius, 2014). The AUC can take on
values between 0 and 1, with 0 being a misleading, 0.5 an uninformative and 1 a perfect
set of forecasts.16

A.3 Description of Estimation Methods

This section provides a brief overview of each method. Table A.2 summarizes the dis-
cussion in this section by highlighting some key benefits and drawbacks of the employed
methods. Of course, this is only a snapshot of the more complete description of these
methods in the mentioned references.17

Logistic regression (logit): Logit models are the workhorse models in the early warn-
ing literature (Frankel and Rose, 1996; Bussière and Fratzscher, 2006; Lo Duca and Pel-
tonen, 2013). They are based on two assumptions. First, the dependent binary variable
is assumed to be driven by a latent process y∗, which is in turn linearly related to the

15This formula follows from the definitions in Powers (2011).
16If the AUC takes the value 0, it is a perfect albeit negative signal. That is, an interpretation of low

probabilities as signals of upcoming crises and vice-versa would result in a perfect prediction. However,
this knowledge does not exist ex-ante. Therefore, misleading predictions and AUC values below 0.5 can
occur in out-of-sample predictions. We thank a reviewer for pointing this out.

17More detailed introductions to these methods may be found, for instance, in Murphy (2012), James
et al. (2013), or Shalev-Shwartz and Ben-David (2014).
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Table A.2: Comparison of employed methods: benefits and drawbacks

Benefits Drawbacks

logit explicit probabilistic foundations pre-specified functional form
high interpretability

knn simple approach strong curse of dimensionality

trees automatic variable selection instability across time / samples
intuitive approach

rf more stable than trees risk of overfitting
improves on tree accuracy complex drivers of predictions

svm flexible nonlinear fitting risk of overfitting
computationally efficient ad hoc in probabilistic setups

difficult to communicate

nen flexible functional form risk of overfitting
recent advances in the literature computationally expensive

difficult to communicate

employed explanatory variables: y∗ = Xβ + ε. Second, the latent process is assumed to
be linked to the binary variable by a logistic transformation (or, equivalently, estimation
errors ε follow a logistic distribution). Hence, a key advantage of logit models is that they
are based on a clear and straightforward statistical model, which explicitly takes uncer-
tainty into account. Compared to machine learning methods, they are easy to interpret
(for instance, in terms of coefficients), but, at the same time, restricted to the specific
functional form just described. A key issue in their estimation is to make sure that a
sufficient number of observations in each category is available (McFadden, 1984). In the
context of early warning models, it is crucial to have a sufficient number of pre-crisis peri-
ods (which are much less frequent than tranquil periods) available for estimation. When
the number of crisis events contained in the sample is reduced, estimation uncertainty in-
creases, and, in the extreme case, perfect discrimination can prevent a proper estimation
of the model’s parameters. To put the logit method on equal footing with the machine
learning methods, we estimate a non-dynamic logit model, pooling observations both in
the cross-section and the time dimension. We do not include fixed effects.

K nearest neighbors (knn): The idea of knn18 (Cover and Hart, 1967) is to predict
the probability of an event (here: pre-crisis or tranquil period) for a given observation Xt,n,
where X is a vector of early-warning indicators at time t in country n. The probability
of being in a pre-crisis period conditional on the vector of observables Xt,n is estimated
by the share of pre-crisis observations among its K closest (nearest) neighbors. Closeness
of two observations X and X ′, is measured by the Euclidean distance, i.e. ||X −X ′|| =√∑d

i=1(Xi −X ′i)2, where d refers to the number of early-warning indicators included

in the model. That is, two observations are close if the realizations of the explanatory

18We implement knn using the R-package ’kknn’.
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variables associated with these observations are similar.
The hyperparameter K is chosen by cross-validation. Moreover, we use a knn algorithm

that refines the method by weighting each of the neighboring points by their distance to
the given point Xt,n. A key problem of knn is that it is subject to a strong “curse of di-
mensionality”. Shalev-Shwartz and Ben-David (2014) show that the sample size required
to achieve a given error grows exponentially with the number of explanatory variables in
the dataset. In our empirical application, we use sets of explanatory variables of different
dimension in order to gain insights on the tradeoff between additional information and
additional complexity.

Decision trees (trees): Binary decision trees19 (Breiman, Friedman, Olshen, and
Stone, 1984) essentially cluster observations into different groups by successively compar-
ing the values of their early-warning indicators to specific thresholds. The key estimation
task performed by the tree is to optimally determine these thresholds, and to decide on
the sequence of variables to compare. Taken together, this determines the structure of
the tree. Similar to KNN, the pre-crisis probability of an observation in a given final
cluster (or node) is estimated as the average share of pre-crisis observations within that
cluster. In contrast to KNN, which treats all explanatory variables uniformly, the tree
optimally determines the importance of each explanatory variables, allowing to ignore
variables deemed to be uninformative. Thus, the tree is, in principle, able to perform
variable selection.

More formally, trees consist of a root, interior nodes (branches) and final nodes (leafs).
The root and every branch consist of a decision rule based on a single explanatory variable
Xi and a threshold τi. The decision rules assign observations to the left subtree if Xi > τi
and to the right subtree otherwise. Starting at the root, observations are thus passed down
the tree until they end up in a final node. For every node, the (predicted) probability
of an event is equal to the average occurrence of said event among observations from the
training sample assigned to the same final node.

The estimation of the tree entails choosing simultaneously the variables x and thresh-
olds τ to split on. Efficient algorithms have been developed for approximating the optimal
solution to this non-trivial task. These proceed by starting at the root and recursively
constructing the tree from there, based on a measure of gain from each considered split
and several potential stopping criteria for limiting the complexity of the tree. In our
case, the number of branches is determined by a “pruning” parameter which balances
increasing complexity against the homogeneity in final leaves.20

The selection of the pruning parameter (the hyperparameter of this method) thus
decides on the complexity of the tree. Lower complexity costs imply additional splits
which decrease classification errors on the training sample and thus increase the sharp-
ness of estimated probabilities (pushing them closer to either zero or one). At the same
time, the larger number of final nodes implies fewer training observations per final node,
which increases estimation uncertainty and the potential for overfit. As the sensitivity of
estimated trees to small changes in the underlying dataset can be high, the method of

19We implement decision trees using the R package ’rpart’.
20This is, of course, only one way to limit tree complexity. Other approaches, for example, set a

minimum number of observations per final node (used in our implementation of random forest), or,
alternatively, a maximum number of final nodes.
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random forests has been developed to mitigate this undesirable feature.

Random forest (rf): Random forests21 (Breiman, 1996, 2001) generalize decision trees
by averaging over the predictions of a large number of different decision trees. This can
reduce the variance of estimates and, hence, prediction errors. Random forests generate
heterogeneity among its trees by (a) estimating trees on randomly chosen subsets of
observations (also called bootstrap aggregating or bagging), and (b) considering only a
randomly chosen subset of early warning indicators at each split (also called random
subspace method, or attribute bagging). Both components are needed in order to de-
correlate individual trees sufficiently, so as to achieve the desired variance reduction,
while maintaining a high degree of prediction accuracy.

To put the random forest method into practice, we have to select three different
hyperparameters. First, we set the number of trees used in each random forest to 1’000
such that the average prediction of the trees in the forest converges. Cross-validation
is used to set the further two hyperparameters of this method. Heterogeneity between
trees is driven largely by the number of randomly drawn variables to be considered at
each split (the second hyperparameter). Third, complexity of the trees in the forest is
limited by setting a minimum number of observations per terminal node, which is the
third hyperparameter of this method.

Random forests have so far been the most frequently employed machine learning
method in the early warning literature (Alessi and Detken, 2018; Holopainen and Sar-
lin, 2017; Tanaka et al., 2016). However, their success in reducing variance and improving
out-of-sample performance depends on achieving a sufficiently low correlation between
the randomly generated trees (Breiman, 2001). We conjecture that achieving such a low
degree of correlation could be especially challenging in the presence of serial and cross-
sectional correlation of the underlying training data.

Support vector machine (svm): svm22 constructs a hyperplane in order to separate
observations into distinct groups, pre-crisis and tranquil periods in our case. When the
data is linearly separable, the main question is which hyperplane to choose from an infinite
space of possible separating hyperplanes. svm uniquely determines the hyperplane by
maximizing the distance of the two closest observations to the separating hyperplane
(this distance is called margin).

For illustration, let us consider a one-dimensional example. Suppose a dataset is uni-
variate, with observations given as points on the real line, namely x = {−3,−2,−1, 1, 2, 3}
and suppose that observations are linearly separable, namely y(x = {−3,−2}) = 1 and
y(x = {−1, 1, 2, 3}) = 0. Then, obviously, any rule which assigns y(x ≤ −2) = 1 and
y(x ≥ −1) = 0 perfectly separates the observations. The svm method would choose the
point −1.5 for a separating rule that maximizes the margin. Obviously, we achieve sepa-
ration by a point in this one-dimensional example, by a line in 2-d, and by a hyperplane
in 3-d or higher.

However, in typical applications observations are not linearly separable. Consider a
modification of the above example where y = 1 for all observations where | x |> 2 and zero

21We implement random forests using the R package ‘randomForest’.
22We implement support vector machines using the R package ’e1071’.
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otherwise (this example is inspired by Shalev-Shwartz and Ben-David (2014, p. 179)).
This is not linearly separable in the original space, but can be made separable by mapping
to a two-dimensional space, for instance by using φ : R→ R2 where φ(x) = (x, x2). Then,
any rule that assigns, y = 1 whenever x2 > 4 separates the observations. This simple
example illustrates the more general idea that is typically used in combination with svm:
By mapping non-linear transformations of the original data into a higher dimensional
space, linear separability of the dataset can be achieved or, at least, enhanced.

Mapping data into higher dimensional feature spaces enhances the expressiveness of
methods (enlarging the space of functions considered for describing the data), but, ob-
viously, higher dimensionality comes at the cost of increased complexity (the number of
parameters can rise exponentially in the multivariate case, for example when polynomials
using cross-products of variables are considered). To deal with this issue, the machine
learning literature has developed the so-called ‘kernel trick’. This allows an efficient com-
putation of svm classifiers when such non-linear mappings into high-dimensional spaces
are used. Broadly speaking, kernel functions describe similarities between observations
and have special properties that allow the svm calculation to be based on these kernel
functions without explicitly handling the high-dimensional representation of the data. A
formal description of the kernel trick may be found, for instance, in Shalev-Shwartz and
Ben-David (2014, p. 181). The complexity of the high-dimensional function space is
controlled by a hyperparameter gamma inside the kernel function, with higher values of
gamma leading to more complexity (we use the standard choice of a radial basis kernel).

While it is possible to linearly separate observations after mapping them into an
arbitrarily complex space (n observations can always be perfectly fitted using a n-1 degree
polynomial), this is generally not desirable. Instead, a penalty term for misclassified
observations is added to the svm classifier loss function. Allowing for misclassification
makes it possible to use the parameter svmg (see Table A.3) to separately control the
complexity of the classifier. Moreover, it induces a tradeoff between large margins and
misclassification, which is controlled by a second hyperparameter svmc (cost of soft margin
constraint violation). The more tolerant we are towards misclassification on the training
sample, the larger the margin can be (ceteris paribus). A larger margin then makes the
classification more robust towards perturbations of the original data, for example when
predicting the label of new data points. Thus, both hyperparameters seek to strike a
balance between perfectly fitting the training data (potentially overfitting relative to the
true model), and correctly classifying new data.

Support vector machines are among the most frequently used machine learning algo-
rithms. Their ability to flexibly fit complex functions to the data at the same time entails
the risk of overfitting. Moreover, the probabilistic foundations for the svm method are
rather ad-hoc (Murphy, 2012). In the early warning context, the presence of a substantial
unpredictable component as well as of cross-sectional and serial correlation may dampen
the method’s out-of-sample performance (see results and discussion). The communication
of this method may present additional challenges.

Neural networks (nnet): Inspired by the structure of the human brain, artificial
neural networks23 consist of a directional network of simple neurons (i.e., network nodes),

23We implement neural networks using the R package ’nnet’.
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arranged in sequential layers. Taken together, they are able to flexibly approximate
functional forms linking input and output of the neural network. In the early warning
context, the observationsXt,n of early-warning indicators are the input to the network,
while the probability of each observation belonging to a pre-crisis state conditional on
Xt,n are its output.

The neurons are the basic building blocks of the network. The input layer of our
neural network with d early-warning indicators consists of d+ 1 neurons. That is, there is
one neuron for each of the explanatory variables, and a neuron for a constant. The output
layer of our neural network consists of a single neuron. Between the input layer and the
output layer, we add a single hidden layer consisting of 1 ≤ m ≤ d hidden nodes.24

The output of each neuron of the input layer is the value of the corresponding ex-
planatory variable. The neuron in the output layer and each neuron in the hidden layer
receives as input a weighted sum of the output of all neurons in the previous layer. The
output of these neurons is a logistic function of its inputs.

The basic architecture of the network, that is the number of hidden layers and the
number of neurons in each hidden layer are exogenously given to the neural network al-
gorithm as hyperparameters. The key task of the algorithm is to estimate the weights
connecting the neurons of adjacent layers. As each neuron can be connected to each
neuron in the previous layer, the number of weights can quickly become large, even in
relatively simple architectures with few hidden layers. This makes neural networks uni-
versal function approximators, but also leads to a challenging estimation task. Generally,
weights are estimated such that they minimize a (potentially non-convex) loss function.
Efficient algorithms for dealing with this problem have been developed in the machine
learning literature (see Shalev-Shwartz and Ben-David (2014) for an introduction).

Neural networks subsume simple logit models as a special case where there is no hidden
layer, i.e. J = 0. In this case, each neuron of the input layer is directly linked to the
output layer and the weights assigned to each input of the neuron in the output layer
correspond to the coefficients of a logistic regression. This implies that in cases where a
simple logit model is able to approximate the (sample) data relatively closely, the neural
network is likely to yield predictions similar to that of the logit model. Generally, the
logit model has the advantage of having to estimate fewer parameters, while the neural
network is able to approximate more complicated functional forms.

Following Holopainen and Sarlin (2017) we focus on single-hidden layer neural net-
works, which can be substantially more flexible than logit models. Neural networks with
more than two hidden layers are considered deep and have recently been successfully
applied for instance to speech and image recognition (LeCun et al., 2015).

A.4 Cross-validation

We use cross-validation to select optimal hyperparameters from a predefined grid. The
idea of cross-validation is to obtain an estimate of how well a model is able to make
predictions on previously unseen data. To this end, the sample is cut repeatedly into an
estimation sample and a test sample. In this sense, cross-validation is similar to out-of-
sample prediction, but without paying as much attention to the time dimension of the
dataset. In particular, we use panel block leave-p-out cross-validation (Arlot, Celisse,

24In general, there can be a number of say J so-called hidden layers each consisting of mJ neurons.
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et al., 2010). In this variant, a block of twelve consecutive quarters (corresponding to the
horizon of the early warning window) across all countries is used as test sample, while
all other observations are included in the training sample. This is done repeatedly for all
possible blocks until the sample observations are exhausted.

Using whole blocks of observations in the test sample instead of randomly selected ob-
servations has two advantages. First, it captures the serial and cross-sectional correlation
of the data in a similar way as recursive out-of-sample estimation. Second, the number of
possible splits of the dataset is limited, making an exhaustive cross-validation over all pos-
sible combinations possible. Using all possible splits into blocks of twelve quarters causes
each observation (time t, country n) to be contained in twelve different panel blocks. That
is, for each observation (t, n), the panel block leave-p-out cross-validation results in twelve
different predictions for every model (with each model being defined by a combination of
method, hyperparameters, and explanatory variables). In order to calculate the relative
usefulness for a given model, we average performance over all cross-validation predictions
from that model. We can then perform a grid search to select for each method the hyper-
parameters maximizing its cross-validation performance. Table A.3 displays the resulting
optimal hyperparameters.

A.5 Panel-block-bootstrap

The aim of our panel-block-bootstrap is to draw random datasets with similar autocorre-
lation and cross-sectional dependence patterns as in the original dataset. To achieve this,
we construct bootstrap datasets from blocks of observations that are jointly sampled from
the original dataset. Drawing blocks of consecutive observations retains the autocorre-
lation structure of the data, while the panel structure of blocks captures cross-sectional
correlation.

For every estimation, we sample R = 1′000 different bootstrap datasets from the
respective training sample, which covers the time-country specific observations {(t, n)|t ∈
{1, . . . , T}, n ∈ {1, . . . , N}}. A block Bt (with blocklength b = 8) starts at time t and
contains the following observations of both X and C̄:

Bt =

 (t, 1) · · · (t, N)
...

. . .
...

(t+ b− 1, 1) · · · (t+ b− 1, N)

 (2)

Bootstrap samples r ∈ {1, . . . , R} are drawn randomly from the original data such
that every observation has an equal probability of entering the random sample. Thus, we
proceed as follows:

1. Initialize with an empty bootstrap sample r = ∅.

2. Draw a random starting period t∗ ∈ {2− b, . . . , T}. If we would not allow for early
or late starting periods (that effectively generate blocks with missing observations),
observations at the beginning or end of the original sample would have a lower
probability of entering the bootstrap sample.

3. Obtain Bt∗ , corresponding to t∗, from the original training dataset. Some observa-
tions may be missing due to (a) shorter sample length for an individual country, (b)
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an early starting period t∗ < 1 or (c) a late starting period t∗ > T − b. In this case,
only include nonempty observations in Bt∗ .

4. Concatenate the bootstrap sample r and Bt∗ .

5. If the bootstrap sample r has fewer observations than the original in-sample dataset,
return to step 2. Otherwise, return the bootstrap sample r.

We estimate every model m on every bootstrap sample r ∈ {1, . . . , R}. Results are
used to predict probability estimates pm,r

t,n for every observation (t, n) in the test sample.
From this, we calculate the different performance measures (relative usefulness, AUC
and BPS) for every bootstrap sample r and model m. The bootstrap distribution of
performance measures across r yields estimates of confidence bands for each model m.25

Moreover, it allows us to test whether model m1’s performance is statistically significantly
better than model m2’s performance. For example, the probability that the relative
usefulness of model m1 is higher than that of model m2 is given by 1

R

∑R
r=1 1U

m1,r
r >U

m2,r
r

.

25Conventional confidence bands from the 5th to the 95th quantile sometimes do not cover the point
estimate. In case of relative usefulness and BPS, we therefore report confidence bands that cover both
the point estimate and 90% of the probability mass. We still work with a sample of 1’000 boostrap
draws even though we would need a higher number of bootstrap samples for confidence bands at extreme
probabilities to converge (Davidson and MacKinnon, 2000). The reason is that our main focus is on the
point estimates and the probability that one method outperforms another. In case of AUC, we recourse to
a non-parametric approach developed specifically for this measure (DeLong, DeLong, and Clarke-Pearson,
1988).
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Table A.3: Hyperparameters for machine learning methods (for baseline results)

Method Hyperparameter name Opt. value Hyperparameter name Opt. value

trees.1
cp (tree complexity parameter
controlling cost of adding another
split to the tree)

0.021212
trees.2 0.027273
trees.3 0.012121
trees.4 0
knn.1

k (number of nearest neighbours to
use for each prediction)

49
knn.2 7
knn.3 29
knn.4 15
rf.1

nodesize (minimum number of
observations per terminal node of
each tree in the forest)

16
rfmtry (number of variables
randomly sampled as candidates at
each split)

2
rf.2 14 3
rf.3 2 2
rf.4 16 9
svm.1

svmg (parameter in radial basis
function)

0.5
svmc (cost of soft margin
constraint violation)

0.01
svm.2 0.5 0.026667
svm.3 0.000488 0.026667
svm.4 0.03125 8
nen.1

nendecay (learning rate parameter
controlling the rate of convergence
of the learning algorithm)

0.1

nensize (# nodes in hidden layer)

3
nen.2 0.1 2
nen.3 10 1
nen.4 0.1 7

31



7 Appendix B: Data

B.1 Sources of Vulnerabilities and Corresponding Indicators

Asset prices: Historically, banking crises have often been preceded by asset price
booms. Banking crises associated with house price booms and busts, could, for example,
not only be observed during the global financial crisis of 2008, but also in a number of
industrial countries in the late 1970s to early 1990s, such as in Spain, Sweden, Norway,
Finland, and Japan (Reinhart and Rogoff, 2008, 2009). We therefore include house prices
and equity prices to capture booms and busts in asset prices.

Credit developments: High private sector indebtedness poses risks to the financial
system when asset price booms are debt-financed, asset prices decrease and borrowers
are unable to repay their debt (Kindleberger and Aliber, 2005; Jordà, Schularick, and
Taylor, 2015). As a consequence of decreasing asset values, banks may be forced to
deleverage, in particular when market liquidity is low and banks relying mainly on short-
term funding face a liquidity mismatch (Brunnermeier and Oehmke, 2013; Brunnermeier,
2009). Deleveraging may induce a credit crunch and potentially lead to a recession. The
effects of losses in asset values may be amplified by fire sales and may spill over to other
assets as these are sold to meet regulatory and internal standards, such as capital and
liquidity ratios. Moreover, bank runs may occur when the net worth of banks decreases
and depositors lose confidence in the affected institutions (Allen and Gale, 2007). To
capture risks related to high private sector indebtedness, we use total credit to the private
non-financial sector relative to GDP as an indicator of how far credit developments are
in line with real economic developments.

Macroeconomic environment: Closely related to credit and asset prices are real eco-
nomic developments. On the one hand, rapid economic growth may increase risk appetite,
asset prices and credit growth (Drehmann, Borio, and Tsatsaronis, 2011; Kindleberger and
Aliber, 2005; Minsky, 1982). On the other hand, real economic downturns may lead to
repayment difficulties on the borrower side inducing asset price declines and financial sec-
tor difficulties (Allen and Gale, 2007). To capture real economic developments we include
GDP, gross fixed capital formation relative to GDP and inflation. Furthermore, we in-
clude three-month interbank interest rates, as banks and investors may take on excessive
risks when interest rates are low and, hence, low-risk assets are less attractive (Maddaloni
and Peydró, 2011; Allen and Gale, 2007; Rajan, 2006). Conversely, an abrupt increase in
interest rates may put pressure on banks as well (Minsky, 1982).

External and global imbalances: The external sector played a prominent role in
the first seminal contributions to the early warning literature (Frankel and Rose, 1996;
Kaminsky and Reinhart, 1999). These papers tended to focus more on balance-of-payment
crises than on systemic banking crises. However, both types of crises may occur jointly and
often reinforce each other as “twin crises” (Kaminsky and Reinhart, 1999). While classic
balance-of-payment crises may be less of a concern for the countries considered in this
paper, external imbalances may still add to vulnerabilities. Similarly to the reasoning on
credit expansion and asset prices, large capital inflows from abroad may support asset price
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booms and induce a reversal in asset prices when these inflows decline or stop (Kaminsky
and Reinhart, 1999; Calvo, 1998). Hence, we include the real effective exchange rate and
the current account balance relative to GDP. Furthermore, global shocks may affect the
domestic banking system through various channels of contagion, such as financial sector
interconnectedness and trade links (Kaminsky and Reinhart, 2000). We therefore add oil
prices as an indicator for global developments.

Any list of potential early warning indicators is naturally incomplete. Yet, for the
purpose of comparing predictions across methods, this is not the key point, as long as
the same variables are used across all methods. Furthermore, it turns out that data
availability is a key issue. While several additional variables would have been plausible
predictors on economic grounds, these variables are not available for a long enough time
span and/or not available for all countries in our sample. In addition, lack of comparability
across countries can be an issue for some variables. For instance, while both theoretical
and empirical arguments for the inclusion of a debt service ratio variable can be made
(e.g. Drehmann and Juselius, 2014; Drehmann, Juselius, and Korinek, 2017), the extent
to which this variable would truncate the sample outweighs its potential benefit in our
case.26 Another important class of variables that we cannot include are those based on
bank balance sheet data, where availability in the time series is even much more restricted
than for the debt service ratio. Nevertheless, we see in the results that the variables we
were able to include do have substantial explanatory power for predicting banking crises.
Thus, for the purpose of comparing different prediction methods (as opposed, say, to
the question of finding the most important early warning indicator(s) as, for instance, in
Drehmann and Juselius, 2014), having a sufficient number of observations in the sample
appears to outweigh the benefits of using a complete set of all potentially important
early warning indicators. Indeed, a robustness check using a shorter sample length shows
that reducing the amount of observations available for estimation substantially reduces
out-of-sample prediction performance (see Section 4.3).

B.2 Filtering

In the HP filtering approach, we transform early warning indicators into gaps by calcu-
lating deviations from the trend computed by a one-sided HP filter. Using a one-sided
filter ensures that the information set at every point in time does not contain future in-
formation.27 For variables such as total-credit-to-GDP ratio, real residential real estate
prices and real equity prices we take into account recent evidence on lower frequency fi-
nancial cycles, as documented, for instance, in Drehmann, Borio, and Tsatsaronis (2012),

26Proprietary debt service ratio data from the BIS is available starting at the earliest in 1980 (public
debt service ratio data from 1999). We compared the availability of the debt service ratio by country with
our sample of crises and early warning indicators described in Table B.1. Including the debt service ratio
starting from 1980 would exclude five of the 13 crises episodes prior to the financial crisis of 2007/2008
and one crisis episode starting in 2008 (as BIS debt service ratio data is not available for Ireland). In
total, a substantial amount of around 400 out of 1801 total observations would be excluded from our
dataset.

27For the first k observations in every country, we need to apply a two-sided filter instead of the recursive
one-sided version, given that the filter needs a certain minimum number of observations to compute a
trend. We set k to ten years in the case of λ = 400′000 and to four years in the case of λ = 1′600.
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and Schüler, Hiebert, and Peltonen (2015). Thus, for these variables we take the value
of λ = 400′000 often employed for early warning models (Drehmann and Juselius, 2014),
corresponding to financial cycles being roughly four times as long as business cycles, which
is broadly in line with the findings in the aforementioned literature on financial cycles.
Moreover, this ensures that the total credit-to-GDP gap used in our analysis is in line with
the definitions of the Basel Committee on Banking Supervision (BCBS) used for Basel
III and for setting countercyclical capital buffers (Drehmann and Juselius, 2014; Basel
Committee on Banking Supervision, 2010). For typical business cycle variables such as
real GDP, gross fixed capital formation-to-GDP, and the real oil price we use a standard
HP filter smoothing parameter of λ = 1′600. In the case of the real effective exchange
rate, we also use λ = 400′000. The reason for this is that real effective exchange rate im-
balances have been found to be extremely persistent, especially since the introduction of
the Euro made adjustments via nominal exchange rate movements impossible (El-Shagi,
Lindner, and von Schweinitz, 2016).28

Robustness checks are performed by transforming the variables into growth rates. In
line with the reasoning for applying different HP filter smoothing parameters for capturing
business cycles and financial cycles, we also use two different growth rate horizons. Our
business cycle variables are transformed into four-quarter growth rates, while our financial
cycle variables are transformed into 16-quarter growth rates.

A detailed description of all variables and their transformations may be found in
Table B.2 in the Appendix. A list of non-transformed original data with the corresponding
sources is documented in Table B.3. Summary statistics of the transformed (standardized)
predictor variables are displayed in Table B.4 for the HP filter and in Table B.5 for the
growth rate transformation. When comparing the means of the selected indicators in
the pre-crisis and tranquil periods, we note that the difference is particularly pronounced
for the credit-to-GDP gap, the residential real estate price gap, the gross fixed capital
formation-to-GDP gap and the current account balance relative to GDP. The first three
of these indicators are, on average, higher and the current account balance to GDP is, on
average, lower during pre-crisis periods. The volatility of these indicators is similar across
pre-crisis and tranquil periods. Similar findings are obtained when using the growth rates
transformation.

28We also follow Drehmann and Juselius (2014) in calculating relative gaps (i.e. the deviations from
trend normalized by the trend) for certain HP filtered variables, which can be useful to improve the
comparability of gaps across time and countries. Relative gaps are used for real equity prices, real
residential real estate prices, the real oil price, real GDP and the real effective exchange rate.
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B.3 Overview of Datasets

Table B.1: Country coverage and crisis dates

Data availability Crisis dates

Country Start End
No. of

Start End Start End Start End
quarters

BE 1975 Q1 2016 Q2 166 no crisis
DE 1971 Q1 2016 Q2 182 1974 Q2 1974 Q4 2001 Q1 2003 Q4
DK 1975 Q1 2016 Q1 165 1987 Q1 1995 Q1 2008 Q1 2013 Q4
ES 1975 Q1 2016 Q1 165 1978 Q1 1985 Q3 2009 Q1 2013 Q4
FI 1981 Q4 2016 Q2 139 1991 Q3 1996 Q4
FR 1973 Q1 2016 Q1 173 1991 Q2 1995 Q1 2008 Q2 2009 Q4
GB 1972 Q1 2016 Q1 177 1973 Q4 1975 Q4 1991 Q3 1994 Q2 2007 Q3 2010 Q1
IE 1990 Q4 2016 Q1 102 2008 Q3 2013 Q4
IT 1971 Q1 2016 Q1 181 1991 Q3 1997 Q4 2011 Q3 2013 Q4
JP 1971 Q1 2016 Q2 182 1997 Q4 2001 Q4
NL 1971 Q1 2016 Q1 181 2008 Q1 2013 Q1
NO 1975 Q1 2016 Q2 166 1988 Q3 1992 Q4
PT 1988 Q1 2016 Q2 114 2008 Q4 ongoing
SE 1975 Q1 2016 Q1 165 1991 Q1 1997 Q2
US 1971 Q1 2016 Q2 182 1988 Q1 1995 Q4 2007 Q4 2010 Q4
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Table B.2: Data transformation and sources - variables used

Category Variable
name

Source Transformation / Description (for
non-transformed variables)

Inputs Combinations

Asset
prices

Real equity
price gap

OECD, Eurostat and
own calculations

Relative gap using HP filter with lambda
of 400,000

Equity prices, consumer
price index

Asset
prices

Real residen-
tial real estate
price gap

OECD, Eurostat and
own calculations

Relative gap using HP filter with lambda
of 400,000 of real residential real estate
price

Residential real estate
prices, consumer price
index

Credit Total credit-
to-GDP gap

BIS, OECD, Eurostat
and own calculations

Absolute gap using HP filter with lambda
of 400,000 of total credit-to-GDP ratio

Total credit, nominal GDP

External Current
account-to-
GDP ratio

OECD, Eurostat and
own calculations

OECD data: Current account to GDP
without transformations, Eurostat data:
Current account to GDP calculated as ra-
tio of current account balance to GDP
(both summed up over four quarters)

Current account balance,
Nominal GDP

Take longest time
series available of
OECD data or
Eurostat data

External Real oil price
gap

OECD and own calcula-
tions

Relative gap using HP filter with lambda
of 1,600 of real oil price

Oil price, consumer price
index (US)

External Real effective
exchange rate
gap

OECD, IMF and own
calculations

Relative gap using HP filter with lambda
of 400,000 of real effective exchange rate

Real effective exchange
rate

Macro 3-month real
money market
rate

OECD, ECB, Eurostat
and own calculations

Real interbank lending rate Nominal 3-month money
market rate, consumer
price index

Macro Inflation rate Eurostat, OECD Annual rate of inflation (y-o-y growth rate
of quarterly data)

Consumer price index

Macro Real GDP gap OECD, Eurostat and
own calculations

Relative gap using HP filter with lambda
of 1,600 of real GDP

Nominal GDP, consumer
price index

Macro Gross fixed
capital
formation-
to-GDP gap

OECD, Eurostat, Bun-
desbank and own calcu-
lations

Absolute gap using HP filter with lambda
of 1,600 of gross fixed capital formation-
to-GDP ratio

Gross fixed capital forma-
tion, nominal GDP
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Table B.3: Data transformation and sources - input data

Variable name Source Transformation / Description (for non-
transformed variables)

Combinations

Consumer price index Eurostat, OECD Consumer price index, end of quarter values, re-
based to 2015=100

Take longest time series available of
OECD data or Eurostat data

Total credit BIS Total credit to the private non-financial sector,
domestic currency, billions

Oil price OECD Brent crude oil price, USD per barrel

Real effective exchange
rate

OECD, IMF Real effective exchange rate, CPI based index,
base year: 2010

Take longest time series available of
OECD data or IMF data

Current account bal-
ance

OECD, Eurostat OECD: Current acount balance as percentage of
GDP Eurostat: Current account balance (own
calculations: sum of last four quarters, as per-
centage of GDP)

Take longest time series available of
OECD data or Eurostat data

Nominal GDP (national
currency)

OECD, Eurostat Gross domestic product at market prices, sea-
sonally adjusted, domestic currency, billions,
sum of last four quarters

Take longest time series available of
OECD data or Eurostat data

Nominal GDP (in EUR,
for current account-to-
GDP calculation)

Eurostat Gross domestic product at market prices, sea-
sonally adjusted, euro, millions, sum of last four
quarters

Gross fixed capital for-
mation

OECD, Eurostat, Bun-
desbank

Gross fixed capital formation, domestic cur-
rency, millions. For DE: Bundesbank data
(including calculations) for long time series of
GFCF

Take longest time series available of
OECD data or Eurostat data

3-month nominal
money market rate

OECD, ECB, Datas-
tream

Interbank interest rate, average through quarter Take longest time series available of
OECD, ECB and Datastream data

Equity prices OECD, Bloomberg,
Datastream

Equity price index, 2010=100, average through
quarter

Take longest time series available of
OECD, Bloomberg and Datastream
data

Residential real estate
prices

OECD Index of residential real estate price, based in
2010, seasonally adjusted.

37



Table B.4: Summary statistics: Gap dataset

Pre-crisis periods Tranquil periods
Variable name mean sd min max obs mean sd min max obs

Total credit-to-GDP gap 0.76 1.03 -1.16 3.19 171 -0.08 0.96 -3.06 3.19 1608
Real residential real estate price gap 0.58 1.06 -1.36 2.48 171 -0.06 0.97 -2.58 2.48 1608
Real equity price gap 0.23 0.74 -1.73 1.68 171 -0.02 1.02 -1.96 3.61 1608
Real GDP gap 0.10 0.94 -3.15 2.20 171 -0.01 1.01 -4.81 3.71 1608
Inflation rate -0.08 0.87 -1.24 3.64 171 0.01 1.01 -1.38 4.83 1608
Gross fixed capital formation-to-GDP gap 0.32 1.02 -2.46 2.97 171 -0.03 0.99 -4.63 3.19 1608
Real 3-month money market rate 0.06 1.10 -3.29 2.32 171 -0.01 0.99 -3.29 2.61 1608
Current account-to-GDP ratio -0.73 1.08 -3.50 2.17 171 0.08 0.96 -3.50 2.75 1608
Real effective exchange rate gap 0.20 0.85 -2.08 2.72 171 -0.02 1.01 -2.61 2.72 1608
Real oil price gap 0.26 1.00 -2.56 2.34 171 -0.03 1.00 -2.56 3.13 1608

Note: Data have been standardized using the unconditional mean and standard deviation across all periods. Since data are winsorized at the 1% and
99% level, minimum (maximum) values may be the same in pre-crisis and tranquil periods.
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Table B.5: Summary statistics: Growth rate dataset

Pre-crisis periods Tranquil periods
Variable name mean sd min max obs mean sd min max obs

4-year growth rate of credit-to-GDP ratio 0.62 1.04 -1.19 3.46 176 -0.07 0.97 -2.34 3.46 1525
4-year growth rate of real residential real es-
tate prices

0.52 1.09 -1.27 2.63 176 -0.06 0.97 -2.47 2.63 1525

4-year growth rate of real equity prices 0.55 1.01 -1.12 3.67 176 -0.06 0.98 -1.35 3.67 1525
1-year growth rate of real GDP 0.09 0.88 -3.38 1.78 176 -0.01 1.01 -3.98 4.65 1525
Inflation rate -0.07 0.90 -1.22 3.87 176 0.01 1.01 -1.37 5.11 1525
1-year growth rate of gross fixed capital
formation-to-GDP ratio

0.27 1.09 -3.96 3.75 176 -0.03 0.98 -3.96 3.75 1525

3-month real money market rate 0.07 1.10 -3.33 2.38 176 -0.01 0.99 -3.33 2.67 1525
Current account-to-GDP ratio -0.75 1.14 -3.22 2.06 176 0.09 0.95 -3.22 2.60 1525
4-year growth rate of real effective exchange
rate

0.24 0.82 -1.45 3.48 176 -0.03 1.02 -2.21 3.48 1525

1-year growth rate of real oil price 0.02 0.88 -1.82 3.10 176 0.00 1.01 -1.82 3.79 1525

Note: Data have been standardized using the unconditional mean and standard deviation across all periods. Since data is winsorized at the 1% and 99%
level, minimum (maximum) values may be the same in pre-crisis and tranquil periods.
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Table B.6: Variables used in specifications (1) - (4)

Credit and Asset Prices Macro External All

(1) (2) (3) (4)

Total credit-to-GDP gap Real GDP gap
Current account-to-GDP

ratio
Total credit-to-GDP gap

Real residential real estate
price gap

Inflation rate
Real effective exchange rate

gap
Real residential real estate

price gap

Real equity price gap
3-month real money market

rate
Real oil price gap Real equity price gap

Gross fixed capital
formation-to-GDP gap

Real GDP gap

Inflation rate

3-month real money market
rate

Gross fixed capital
formation-to-GDP gap

Current account-to-GDP
ratio

Real effective exchange rate
gap

Real oil price gap
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8 Appendix C: Results
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Table C.1: In-sample performance using different performance measures

Threshold TP FP TN FN Ur F1 AUC BPS

logit.1 0.109 102 402 1207 69 0.347** [ 0.185, 0.440] 0.302** [0.217, 0.352] 0.736*** [0.703, 0.769] 0.077** [0.076, 0.092]
trees.1 0.097 84 96 1513 87 0.432** [ 0.158, 0.601] 0.479*** [0.246, 0.541] 0.776*** [0.742, 0.810] 0.063*** [0.060, 0.101]
knn.1 0.126 152 315 1294 19 0.693* [ 0.353, 0.693] 0.476* [0.327, 0.561] 0.928*** [0.915, 0.942] 0.057* [0.057, 0.086]
rf.1 0.228 170 45 1564 1 0.966 [ 0.411, 0.966] 0.881 [0.432, 0.881] 0.994 [0.992, 0.996] 0.029 [0.029, 0.078]
svm.1 0.079 157 895 714 14 0.362** [-0.006, 0.483] 0.257** [0.092, 0.437] 0.837*** [0.808, 0.866] 0.073** [0.064, 0.094]
nen.1 0.091 121 405 1204 50 0.456** [ 0.201, 0.503] 0.347** [0.238, 0.467] 0.777*** [0.743, 0.812] 0.070** [0.069, 0.092]
logit.2 0.098 107 682 927 64 0.202*** [ 0.018, 0.236] 0.223* [0.141, 0.232] 0.613*** [0.576, 0.651] 0.086 [0.086, 0.099]
trees.2 0.096 171 1609 0 0 0.000*** [-0.031, 0.216] 0.175** [0.033, 0.278] 0.500*** [0.500, 0.500] 0.087 [0.078, 0.109]
knn.2 0.315 171 57 1552 0 0.965 [ 0.265, 0.965] 0.857 [0.350, 0.857] 0.988*** [0.984, 0.991] 0.036 [0.036, 0.101]
rf.2 0.189 170 45 1564 1 0.966 [ 0.240, 0.966] 0.881 [0.308, 0.881] 0.995 [0.994, 0.997] 0.036 [0.036, 0.090]
svm.2 0.097 92 91 1518 79 0.481** [ 0.129, 0.489] 0.520* [0.206, 0.520] 0.867*** [0.842, 0.891] 0.074 [0.074, 0.113]
nen.2 0.130 74 268 1341 97 0.266*** [ 0.042, 0.294] 0.288* [0.136, 0.315] 0.678*** [0.640, 0.716] 0.081 [0.081, 0.099]
logit.3 0.097 118 482 1127 53 0.390* [ 0.243, 0.422] 0.306** [0.255, 0.358] 0.745*** [0.712, 0.778] 0.081** [0.081, 0.090]
trees.3 0.096 171 1609 0 0 0.000** [ 0.000, 0.410] 0.175*** [0.155, 0.404] 0.500*** [0.500, 0.500] 0.087*** [0.074, 0.107]
knn.3 0.150 148 291 1318 23 0.685 [ 0.302, 0.685] 0.485** [0.321, 0.485] 0.919*** [0.905, 0.932] 0.062** [0.062, 0.090]
rf.3 0.373 171 0 1609 0 1.000 [ 0.299, 1.000] 1.000 [0.411, 1.000] 1.000 [1.000, 1.000] 0.012 [0.012, 0.077]
svm.3 0.042 171 1609 0 0 0.000** [-0.258, 0.320] 0.175** [0.021, 0.313] 0.390*** [0.350, 0.431] 0.089** [0.084, 0.800]
nen.3 0.156 117 494 1115 54 0.377* [ 0.263, 0.419] 0.299** [0.240, 0.332] 0.744*** [0.711, 0.777] 0.089** [0.087, 0.122]
logit.4 0.109 119 297 1312 52 0.511* [ 0.208, 0.561] 0.405** [0.250, 0.424] 0.810*** [0.779, 0.840] 0.073** [0.073, 0.098]
trees.4 0.100 138 214 1395 33 0.674* [ 0.230, 0.711] 0.528*** [0.301, 0.689] 0.901*** [0.879, 0.923] 0.041*** [0.041, 0.111]
knn.4 0.339 166 26 1583 5 0.955 [ 0.370, 0.955] 0.915 [0.419, 0.915] 0.997*** [0.996, 0.999] 0.021 [0.021, 0.083]
rf.4 0.280 171 13 1596 0 0.992 [ 0.347, 0.992] 0.963 [0.392, 0.963] 0.999 [0.999, 1.000] 0.017 [0.017, 0.082]
svm.4 0.110 143 84 1525 28 0.784 [ 0.334, 0.784] 0.719* [0.354, 0.719] 0.946*** [0.930, 0.961] 0.045* [0.044, 0.101]
nen.4 0.230 139 78 1531 32 0.764 [ 0.338, 0.793] 0.716 [0.400, 0.794] 0.882*** [0.846, 0.917] 0.037 [0.034, 0.083]

Note: Best performance on given dataset in bold. Stars indicate if the respective method’s performance is significantly worse than the best model’s per-
formance on the same dataset (∗∗∗/∗∗/∗ for the 1%/5%/10% significance level). For Ur, F1 and AUC higher values indicate better prediction performance,
while for BPS lower values are preferable. Numbers in brackets indicate 90% confidence bands. Model names reported in format “method.dataset”, where
datasets consist of the following sets of variables (1): credit and asset prices, (2) macro variables, (3) external imbalances, and (4) all variables (see also
Table B.6).
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Table C.2: Out-of-sample performance using different performance measures

Threshold TP FP TN FN Ur F1 AUC BPS

logit.1 0.096 46 96 145 14 0.368 [ 0.143, 0.431] 0.455 [0.345, 0.481] 0.737 [0.682, 0.792] 0.139 [0.131, 0.177]
trees.1 0.065 24 48 193 36 0.201 [ 0.084, 0.317] 0.364* [0.265, 0.456] 0.591*** [0.510, 0.672] 0.148* [0.142, 0.202]
knn.1 0.124 30 61 180 30 0.247 [ 0.088, 0.384] 0.397 [0.279, 0.481] 0.704 [0.644, 0.765] 0.153 [0.141, 0.185]
rf.1 0.197 22 29 212 38 0.246 [ 0.129, 0.350] 0.396 [0.293, 0.478] 0.725 [0.666, 0.785] 0.150 [0.134, 0.177]
svm.1 0.078 27 56 185 33 0.218* [ 0.018, 0.326] 0.378*** [0.267, 0.441] 0.507*** [0.418, 0.595] 0.161*** [0.161, 0.237]
nen.1 0.124 26 44 197 34 0.251 [ 0.080, 0.451] 0.400 [0.281, 0.515] 0.711 [0.646, 0.776] 0.144 [0.131, 0.181]
logit.2 0.100 7 85 156 53 -0.236 [-0.386, -0.036] 0.092 [0.037, 0.253] 0.261 [0.203, 0.318] 0.182 [0.177, 0.207]
trees.2 0.076 8 178 63 52 -0.605 [-0.605, -0.087] 0.065 [0.019, 0.224] 0.176 [0.126, 0.227] 0.204*** [0.193, 0.256]
knn.2 0.309 4 37 204 56 -0.087 [-0.137, 0.034] 0.079 [0.000, 0.186] 0.385 [0.339, 0.431] 0.231*** [0.210, 0.259]
rf.2 0.204 0 59 182 60 -0.245 [-0.323, -0.132] 0.000 [0.000, 0.092] 0.231 [0.185, 0.276] 0.227*** [0.214, 0.260]
svm.2 0.087 17 72 169 43 -0.015 [-0.257, 0.060] 0.228 [0.076, 0.306] 0.312 [0.242, 0.382] 0.182** [0.182, 0.260]
nen.2 0.098 0 84 157 60 -0.349 [-0.382, -0.048] 0.000 [0.000, 0.209] 0.195 [0.152, 0.238] 0.190 [0.179, 0.212]
logit.3 0.087 40 55 186 20 0.438 [ 0.309, 0.563] 0.516 [0.438, 0.600] 0.762 [0.699, 0.825] 0.153 [0.131, 0.164]
trees.3 0.077 56 131 110 4 0.390*** [ 0.072, 0.390] 0.453*** [0.237, 0.514] 0.618*** [0.567, 0.670] 0.181*** [0.154, 0.206]
knn.3 0.151 30 50 191 30 0.293*** [ 0.133, 0.417] 0.429** [0.305, 0.510] 0.663*** [0.594, 0.732] 0.159** [0.148, 0.181]
rf.3 0.423 10 7 234 50 0.138*** [ 0.055, 0.283] 0.260** [0.140, 0.351] 0.615*** [0.541, 0.689] 0.161** [0.145, 0.187]
svm.3 0.094 37 100 141 23 0.202** [ 0.043, 0.409] 0.376*** [0.277, 0.491] 0.291 [0.233, 0.348] 0.176*** [0.150, 0.219]
nen.3 0.157 41 60 181 19 0.434 [ 0.322, 0.551] 0.509 [0.448, 0.595] 0.584*** [0.523, 0.644] 0.161 [0.155, 0.164]
logit.4 0.091 45 35 206 15 0.605 [ 0.222, 0.605] 0.643 [0.383, 0.643] 0.852 [0.797, 0.906] 0.125 [0.106, 0.178]
trees.4 0.065 18 42 199 42 0.126*** [-0.037, 0.313] 0.300*** [0.131, 0.455] 0.456*** [0.383, 0.530] 0.255*** [0.215, 0.289]
knn.4 0.287 4 31 210 56 -0.062*** [-0.166, 0.042] 0.084*** [0.000, 0.196] 0.366*** [0.312, 0.419] 0.217*** [0.167, 0.239]
rf.4 0.265 10 41 200 50 -0.003*** [-0.141, 0.146] 0.180*** [0.060, 0.319] 0.525*** [0.458, 0.592] 0.199*** [0.147, 0.222]
svm.4 0.105 19 92 149 41 -0.065*** [-0.173, 0.130] 0.222*** [0.129, 0.322] 0.486*** [0.423, 0.548] 0.217*** [0.170, 0.269]
nen.4 0.292 8 10 231 52 0.092** [-0.041, 0.250] 0.205 [0.109, 0.400] 0.747*** [0.694, 0.801] 0.170 [0.141, 0.190]

Note: Best performance on given dataset in bold. Stars indicate if the respective method’s performance is significantly worse than the best model’s per-
formance on the same dataset (∗∗∗/∗∗/∗ for the 1%/5%/10% significance level). For Ur, F1 and AUC higher values indicate better prediction performance,
while for BPS lower values are preferable. Numbers in brackets indicate 90% confidence bands. Model names reported in format “method.dataset”, where
datasets consist of the following sets of variables (1): credit and asset prices, (2) macro variables, (3) external imbalances, and (4) all variables (see also
Table B.6).
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Table C.3: Robustness: Out-of-sample performance for µ = 0.75

Threshold TP FP TN FN Ur F1 AUC BPS

logit.1 0.026 60 182 59 0 0.245 [-0.527, 0.378] 0.397 [0.335, 0.444] 0.737 [0.682, 0.792] 0.139 [0.128, 0.178]
trees.1 0.086 60 241 0 0 0.000 [-0.886, 0.099] 0.332 [0.271, 0.388] 0.235 [0.186, 0.283] 0.177* [0.147, 0.199]
knn.1 0.066 42 98 143 18 -0.307*** [-1.078, 0.006] 0.420 [0.299, 0.495] 0.680* [0.610, 0.749] 0.155 [0.134, 0.180]
rf.1 0.177 23 30 211 37 -0.974*** [-1.378, -0.599] 0.407 [0.305, 0.590] 0.736 [0.678, 0.794] 0.150 [0.119, 0.178]
svm.1 0.044 41 167 74 19 -0.643*** [-1.235, -0.139] 0.306* [0.242, 0.383] 0.529*** [0.449, 0.610] 0.144** [0.142, 0.224]
nen.1 0.000 60 241 0 0 0.000 [-0.296, 0.058] 0.332*** [0.251, 0.341] 0.500*** [0.500, 0.500] 0.199*** [0.185, 0.204]
logit.2 0.025 60 241 0 0 0.000 [-1.051, 0.032] 0.332 [0.249, 0.376] 0.261 [0.203, 0.318] 0.182 [0.176, 0.207]
trees.2 0.069 60 241 0 0 0.000* [-1.741, 0.083] 0.332*** [0.155, 0.365] 0.176 [0.126, 0.227] 0.204 [0.190, 0.254]
knn.2 0.077 22 128 113 38 -1.431*** [-1.998, -0.994] 0.210 [0.098, 0.296] 0.294 [0.238, 0.350] 0.197 [0.182, 0.209]
rf.2 0.146 0 77 164 60 -2.320*** [-2.353, -1.936] 0.000*** [0.000, 0.103] 0.231 [0.186, 0.276] 0.224** [0.209, 0.263]
svm.2 0.076 57 235 6 3 -0.125 [-0.622, 0.116] 0.324 [0.289, 0.369] 0.272 [0.215, 0.330] 0.178 [0.166, 0.228]
nen.2 0.000 60 241 0 0 0.000 [-0.309, 0.100] 0.332 [0.265, 0.339] 0.500 [0.500, 0.500] 0.199 [0.194, 0.206]
logit.3 0.050 50 110 131 10 0.044 [-0.394, 0.127] 0.455 [0.385, 0.492] 0.762 [0.699, 0.825] 0.153 [0.136, 0.165]
trees.3 0.089 60 241 0 0 0.000* [-0.914, 0.078] 0.332*** [0.275, 0.403] 0.233 [0.180, 0.286] 0.177*** [0.146, 0.195]
knn.3 0.071 41 79 162 19 -0.278** [-0.874, -0.236] 0.456*** [0.347, 0.494] 0.656*** [0.585, 0.727] 0.165** [0.146, 0.176]
rf.3 0.133 18 42 199 42 -1.274*** [-1.545, -0.878] 0.300*** [0.155, 0.383] 0.605*** [0.533, 0.677] 0.171*** [0.148, 0.189]
svm.3 0.069 59 211 30 1 0.074 [-0.381, 0.212] 0.358*** [0.316, 0.384] 0.328* [0.263, 0.393] 0.176*** [0.149, 0.222]
nen.3 0.077 50 107 134 10 0.056 [-0.381, 0.152] 0.461 [0.388, 0.500] 0.757 [0.700, 0.814] 0.159 [0.149, 0.175]
logit.4 0.046 55 111 130 5 0.289 [-0.598, 0.289] 0.487 [0.368, 0.533] 0.852 [0.797, 0.906] 0.125 [0.114, 0.177]
trees.4 0.089 60 241 0 0 0.000 [-0.793, 0.220] 0.332** [0.281, 0.404] 0.233** [0.180, 0.286] 0.177** [0.147, 0.210]
knn.4 0.165 6 47 194 54 -1.895*** [-2.128, -1.478] 0.106*** [0.020, 0.243] 0.381*** [0.319, 0.443] 0.199*** [0.166, 0.216]
rf.4 0.279 9 39 202 51 -1.712*** [-2.049, -1.169] 0.167*** [0.041, 0.323] 0.519*** [0.453, 0.586] 0.199*** [0.161, 0.221]
svm.4 0.011 60 241 0 0 0.000 [-0.921, 0.100] 0.332** [0.256, 0.361] 0.238** [0.190, 0.287] 0.179** [0.171, 0.232]
nen.4 0.000 60 241 0 0 0.000 [-0.913, 0.054] 0.332*** [0.250, 0.347] 0.500*** [0.500, 0.500] 0.199*** [0.183, 0.211]

Note: Best performance on given dataset in bold. Stars indicate if the respective method’s performance is significantly worse than the best model’s per-
formance on the same dataset (∗∗∗/∗∗/∗ for the 1%/5%/10% significance level). For Ur, F1 and AUC higher values indicate better prediction performance,
while for BPS lower values are preferable. Numbers in brackets indicate 90% confidence bands. Model names reported in format “method.dataset”, where
datasets consist of the following sets of variables (1): credit and asset prices, (2) macro variables, (3) external imbalances, and (4) all variables (see also
Table B.6).
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Table C.4: Robustness: Out-of-sample performance when using growth rates (instead of gaps) as data transformation

Threshold TP FP TN FN Ur F1 AUC BPS

logit.1 0.092 39 74 179 34 0.242 [ 0.077, 0.342] 0.419 [0.317, 0.480] 0.746 [0.696, 0.796] 0.169 [0.158, 0.190]
trees.1 0.071 31 46 207 42 0.243 [ 0.063, 0.347] 0.413** [0.239, 0.490] 0.450*** [0.374, 0.527] 0.189** [0.174, 0.224]
knn.1 0.111 37 54 199 36 0.293 [ 0.084, 0.329] 0.451 [0.293, 0.477] 0.638*** [0.570, 0.707] 0.181 [0.171, 0.200]
rf.1 0.214 25 29 224 48 0.228 [ 0.083, 0.314] 0.394 [0.243, 0.472] 0.700* [0.641, 0.759] 0.166 [0.162, 0.202]
svm.1 0.100 30 85 168 43 0.075 [-0.108, 0.206] 0.319** [0.172, 0.404] 0.445*** [0.378, 0.512] 0.195** [0.174, 0.259]
nen.1 0.119 36 62 191 37 0.248 [ 0.135, 0.356] 0.421 [0.320, 0.480] 0.711*** [0.656, 0.766] 0.180 [0.164, 0.189]
logit.2 0.095 10 130 123 63 -0.377 [-0.432, -0.109] 0.094 [0.048, 0.217] 0.236 [0.185, 0.287] 0.209 [0.204, 0.234]
trees.2 0.088 13 181 72 60 -0.537 [-0.537, -0.110] 0.097 [0.031, 0.277] 0.193* [0.154, 0.232] 0.225*** [0.212, 0.269]
knn.2 0.159 1 55 198 72 -0.204 [-0.281, -0.105] 0.016 [0.000, 0.082] 0.216 [0.174, 0.258] 0.230* [0.221, 0.242]
rf.2 0.199 0 43 210 73 -0.170 [-0.245, -0.103] 0.000 [0.000, 0.086] 0.202* [0.158, 0.245] 0.248*** [0.237, 0.272]
svm.2 0.095 3 69 184 70 -0.232 [-0.315, -0.110] 0.041 [0.000, 0.173] 0.171** [0.131, 0.211] 0.220*** [0.220, 0.301]
nen.2 0.121 6 86 167 67 -0.258 [-0.332, -0.095] 0.073 [0.014, 0.147] 0.214 [0.168, 0.260] 0.219 [0.212, 0.242]
logit.3 0.079 47 81 172 26 0.324 [ 0.193, 0.448] 0.468 [0.388, 0.558] 0.693 [0.628, 0.758] 0.172 [0.157, 0.190]
trees.3 0.070 49 194 59 24 -0.096** [-0.156, 0.197] 0.310*** [0.200, 0.519] 0.583*** [0.508, 0.658] 0.196*** [0.190, 0.236]
knn.3 0.096 48 96 157 25 0.278 [ 0.107, 0.352] 0.442*** [0.316, 0.489] 0.679 [0.625, 0.734] 0.180*** [0.174, 0.206]
rf.3 0.257 11 26 227 62 0.048*** [-0.015, 0.200] 0.200*** [0.128, 0.368] 0.667 [0.614, 0.720] 0.194*** [0.177, 0.219]
svm.3 0.089 28 106 147 45 -0.035*** [-0.193, 0.107] 0.271*** [0.192, 0.350] 0.408** [0.354, 0.462] 0.201*** [0.186, 0.266]
nen.3 0.105 44 81 172 29 0.283 [ 0.103, 0.388] 0.444*** [0.317, 0.519] 0.663*** [0.601, 0.724] 0.180*** [0.172, 0.203]
logit.4 0.092 51 54 199 22 0.485 [ 0.153, 0.485] 0.573 [0.356, 0.573] 0.712*** [0.648, 0.776] 0.163 [0.145, 0.204]
trees.4 0.083 3 7 246 70 0.013*** [-0.133, 0.106] 0.072*** [0.020, 0.279] 0.661*** [0.609, 0.712] 0.224*** [0.207, 0.273]
knn.4 0.309 2 20 233 71 -0.052*** [-0.121, 0.019] 0.042*** [0.000, 0.165] 0.377*** [0.329, 0.426] 0.230*** [0.206, 0.247]
rf.4 0.264 0 14 239 73 -0.055*** [-0.149, 0.100] 0.000** [0.000, 0.286] 0.495*** [0.432, 0.558] 0.205** [0.176, 0.221]
svm.4 0.062 25 93 160 48 -0.025*** [-0.203, 0.086] 0.262*** [0.174, 0.400] 0.506*** [0.442, 0.569] 0.197*** [0.197, 0.287]
nen.4 0.140 39 30 223 34 0.416 [ 0.157, 0.434] 0.549 [0.343, 0.556] 0.791 [0.737, 0.845] 0.164 [0.149, 0.185]

Note: Best performance on given dataset in bold. Stars indicate if the respective method’s performance is significantly worse than the best model’s per-
formance on the same dataset (∗∗∗/∗∗/∗ for the 1%/5%/10% significance level). For Ur, F1 and AUC higher values indicate better prediction performance,
while for BPS lower values are preferable. Numbers in brackets indicate 90% confidence bands. Model names reported in format “method.dataset”, where
datasets consist of the following sets of variables (1): credit and asset prices, (2) macro variables, (3) external imbalances, and (4) all variables (see also
Table B.6).
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Table C.5: Robustness: Out-of-sample performance when starting the dataset in 1980Q1 (instead of 1970Q1)

Threshold TP FP TN FN Ur F1 AUC BPS

logit.1 0.104 37 81 160 23 0.281 [ 0.097, 0.435] 0.416 [0.319, 0.490] 0.732 [0.676, 0.788] 0.139 [0.125, 0.180]
trees.1 0.077 26 52 189 34 0.218 [ 0.072, 0.368] 0.377** [0.247, 0.488] 0.441*** [0.355, 0.527] 0.156** [0.148, 0.205]
knn.1 0.129 26 52 189 34 0.218 [ 0.063, 0.347] 0.377 [0.262, 0.467] 0.622*** [0.546, 0.699] 0.158 [0.134, 0.185]
rf.1 0.214 19 31 210 41 0.188 [ 0.071, 0.292] 0.345 [0.228, 0.426] 0.680* [0.616, 0.744] 0.155 [0.137, 0.185]
svm.1 0.084 28 87 154 32 0.106 [-0.015, 0.276] 0.320*** [0.219, 0.417] 0.526*** [0.441, 0.610] 0.162*** [0.162, 0.249]
nen.1 0.123 27 37 204 33 0.296 [ 0.055, 0.405] 0.435 [0.258, 0.500] 0.692** [0.625, 0.759] 0.144 [0.134, 0.182]
logit.2 0.100 5 83 158 55 -0.261 [-0.369, -0.066] 0.068 [0.039, 0.214] 0.235*** [0.179, 0.291] 0.189 [0.181, 0.221]
trees.2 0.089 0 34 207 60 -0.141 [-0.220, 0.072] 0.000** [0.000, 0.118] 0.173*** [0.131, 0.215] 0.234** [0.218, 0.292]
knn.2 0.130 1 85 156 59 -0.336 [-0.369, -0.120] 0.014 [0.000, 0.124] 0.221*** [0.171, 0.270] 0.205 [0.194, 0.217]
rf.2 0.176 0 46 195 60 -0.191 [-0.282, -0.132] 0.000 [0.000, 0.071] 0.212*** [0.169, 0.255] 0.211 [0.201, 0.231]
svm.2 0.110 15 79 162 45 -0.078 [-0.253, 0.018] 0.195 [0.053, 0.241] 0.283* [0.224, 0.343] 0.185 [0.185, 0.249]
nen.2 0.140 1 97 144 59 -0.386 [-0.423, -0.094] 0.013 [0.000, 0.160] 0.356 [0.302, 0.409] 0.191 [0.187, 0.233]
logit.3 0.096 39 59 182 21 0.405 [ 0.264, 0.513] 0.494 [0.408, 0.566] 0.753 [0.691, 0.815] 0.153 [0.124, 0.168]
trees.3 0.067 41 107 134 19 0.239** [ 0.025, 0.455] 0.394*** [0.212, 0.534] 0.595*** [0.526, 0.664] 0.175*** [0.159, 0.217]
knn.3 0.147 19 51 190 41 0.105*** [-0.004, 0.209] 0.292*** [0.217, 0.385] 0.555*** [0.486, 0.625] 0.175*** [0.152, 0.198]
rf.3 0.393 7 18 223 53 0.042*** [-0.112, 0.134] 0.165*** [0.000, 0.277] 0.563*** [0.492, 0.635] 0.179*** [0.163, 0.206]
svm.3 0.103 21 131 110 39 -0.194*** [-0.194, 0.080] 0.198*** [0.118, 0.286] 0.234 [0.177, 0.291] 0.183*** [0.168, 0.232]
nen.3 0.121 37 64 177 23 0.351* [ 0.101, 0.480] 0.460*** [0.293, 0.563] 0.664*** [0.597, 0.732] 0.164*** [0.143, 0.200]
logit.4 0.090 37 27 214 23 0.505 [ 0.180, 0.559] 0.597 [0.351, 0.597] 0.809 [0.754, 0.863] 0.143 [0.127, 0.192]
trees.4 0.070 1 51 190 59 -0.195*** [-0.207, 0.118] 0.018*** [0.018, 0.290] 0.172 [0.125, 0.219] 0.298*** [0.223, 0.303]
knn.4 0.267 2 36 205 58 -0.116*** [-0.216, 0.009] 0.041*** [0.000, 0.178] 0.355*** [0.302, 0.409] 0.211*** [0.173, 0.231]
rf.4 0.191 2 28 213 58 -0.083*** [-0.211, 0.139] 0.044 [0.044, 0.322] 0.429*** [0.366, 0.491] 0.180 [0.169, 0.196]
svm.4 0.104 14 68 173 46 -0.049*** [-0.170, 0.076] 0.197*** [0.129, 0.324] 0.474*** [0.409, 0.539] 0.210*** [0.181, 0.270]
nen.4 0.054 9 9 232 51 0.113** [-0.058, 0.226] 0.231** [0.094, 0.378] 0.736** [0.677, 0.794] 0.187** [0.149, 0.224]

Note: Best performance on given dataset in bold. Stars indicate if the respective method’s performance is significantly worse than the best model’s per-
formance on the same dataset (∗∗∗/∗∗/∗ for the 1%/5%/10% significance level). For Ur, F1 and AUC higher values indicate better prediction performance,
while for BPS lower values are preferable. Numbers in brackets indicate 90% confidence bands. Model names reported in format “method.dataset”, where
datasets consist of the following sets of variables (1): credit and asset prices, (2) macro variables, (3) external imbalances, and (4) all variables (see also
Table B.6).
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Table C.6: Robustness: Out-of-sample performance when using Laeven & Valencia crisis database

Threshold TP FP TN FN Ur F1 AUC BPS

logit.1 0.048 63 61 131 26 0.390 [ 0.072, 0.443] 0.592 [0.357, 0.620] 0.575*** [0.514, 0.637] 0.267 [0.230, 0.294]
trees.1 0.045 17 16 176 72 0.108 [-0.112, 0.436] 0.279* [0.044, 0.519] 0.217 [0.155, 0.280] 0.263 [0.257, 0.312]
knn.1 0.090 42 20 172 47 0.368 [ 0.028, 0.402] 0.556** [0.208, 0.586] 0.587*** [0.522, 0.652] 0.277 [0.240, 0.304]
rf.1 0.183 22 3 189 67 0.232 [ 0.045, 0.260] 0.386 [0.163, 0.424] 0.534*** [0.468, 0.601] 0.266 [0.234, 0.293]
svm.1 0.061 29 38 154 60 0.128** [-0.087, 0.234] 0.372*** [0.125, 0.437] 0.351 [0.277, 0.425] 0.243 [0.243, 0.372]
nen.1 0.057 49 37 155 40 0.358 [ 0.076, 0.455] 0.560 [0.297, 0.627] 0.679 [0.621, 0.737] 0.267 [0.246, 0.296]
logit.2 0.076 0 144 48 89 -0.750* [-0.750, -0.221] 0.000 [0.000, 0.263] 0.086*** [0.056, 0.117] 0.321 [0.313, 0.385]
trees.2 0.056 77 190 2 12 -0.124 [-0.468, 0.184] 0.433 [0.000, 0.462] 0.073*** [0.047, 0.099] 0.305 [0.300, 0.372]
knn.2 0.099 3 93 99 86 -0.451 [-0.451, -0.190] 0.032 [0.000, 0.098] 0.161*** [0.125, 0.197] 0.340 [0.316, 0.362]
rf.2 0.176 0 62 130 89 -0.323 [-0.417, -0.176] 0.000 [0.000, 0.043] 0.075*** [0.050, 0.100] 0.348 [0.327, 0.385]
svm.2 0.058 41 107 85 48 -0.097 [-0.312, 0.323] 0.346 [0.221, 0.528] 0.087*** [0.059, 0.114] 0.302 [0.283, 0.371]
nen.2 0.055 18 115 77 71 -0.397 [-0.555, -0.013] 0.162 [0.000, 0.340] 0.381 [0.322, 0.439] 0.337 [0.300, 0.374]
logit.3 0.060 37 16 176 52 0.332 [ 0.105, 0.429] 0.521 [0.344, 0.607] 0.401 [0.337, 0.465] 0.295*** [0.281, 0.304]
trees.3 0.055 89 192 0 0 0.000 [-0.256, 0.300] 0.481** [0.214, 0.705] 0.081*** [0.053, 0.109] 0.302*** [0.278, 0.333]
knn.3 0.060 28 91 101 61 -0.159*** [-0.205, 0.085] 0.269** [0.163, 0.342] 0.336*** [0.282, 0.390] 0.305*** [0.289, 0.321]
rf.3 0.138 7 18 174 82 -0.015** [-0.137, 0.060] 0.123* [0.018, 0.211] 0.396 [0.338, 0.454] 0.305*** [0.285, 0.321]
svm.3 0.065 27 89 103 62 -0.160 [-0.374, 0.204] 0.263** [0.086, 0.475] 0.088*** [0.057, 0.118] 0.305*** [0.284, 0.361]
nen.3 0.086 36 15 177 53 0.326 [ 0.137, 0.446] 0.514 [0.364, 0.619] 0.387 [0.332, 0.441] 0.285 [0.269, 0.292]
logit.4 0.076 49 32 160 40 0.384 [-0.143, 0.384] 0.576 [0.215, 0.576] 0.456*** [0.390, 0.522] 0.275 [0.239, 0.345]
trees.4 0.056 6 168 24 83 -0.808 [-0.808, 0.155] 0.046 [0.000, 0.400] 0.081 [0.048, 0.113] 0.302 [0.269, 0.339]
knn.4 0.228 6 42 150 83 -0.151 [-0.187, -0.023] 0.088* [0.000, 0.154] 0.355*** [0.312, 0.399] 0.350* [0.329, 0.381]
rf.4 0.173 12 17 175 77 0.046 [-0.085, 0.165] 0.203 [0.061, 0.292] 0.259 [0.198, 0.320] 0.299 [0.279, 0.311]
svm.4 0.056 29 83 109 60 -0.106* [-0.270, 0.082] 0.289* [0.136, 0.370] 0.348* [0.284, 0.413] 0.295* [0.289, 0.386]
nen.4 0.160 12 10 182 77 0.083 [-0.122, 0.199] 0.216* [0.123, 0.400] 0.736 [0.687, 0.785] 0.304* [0.283, 0.378]

Note: Best performance on given dataset in bold. Stars indicate if the respective method’s performance is significantly worse than the best model’s per-
formance on the same dataset (∗∗∗/∗∗/∗ for the 1%/5%/10% significance level). For Ur, F1 and AUC higher values indicate better prediction performance,
while for BPS lower values are preferable. Numbers in brackets indicate 90% confidence bands. Model names reported in format “method.dataset”, where
datasets consist of the following sets of variables (1): credit and asset prices, (2) macro variables, (3) external imbalances, and (4) all variables (see also
Table B.6).
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Table C.7: Robustness: Out-of-sample forecast performance with a data sample split in 2005Q2

Threshold TP FP TN FN Ur F1 AUC BPS

logit.1 0.098 37 71 170 23 0.322 [-0.149, 0.410] 0.440 [0.291, 0.530] 0.768* [0.717, 0.820] 0.139 [0.126, 0.187]
trees.1 0.067 21 17 224 39 0.279 [ 0.000, 0.521] 0.429 [0.097, 0.606] 0.697*** [0.636, 0.759] 0.149* [0.113, 0.205]
knn.1 0.124 40 40 201 20 0.501 [ 0.001, 0.626] 0.571 [0.169, 0.695] 0.815 [0.766, 0.864] 0.144 [0.103, 0.193]
rf.1 0.179 23 19 222 37 0.304 [-0.021, 0.459] 0.451 [0.090, 0.581] 0.797 [0.740, 0.854] 0.136 [0.101, 0.181]
svm.1 0.071 18 19 222 42 0.221 [-0.053, 0.547] 0.371* [0.131, 0.542] 0.636*** [0.565, 0.708] 0.178** [0.137, 0.236]
nen.1 0.089 35 47 194 25 0.388 [ 0.000, 0.509] 0.493 [0.151, 0.580] 0.786 [0.735, 0.837] 0.142 [0.126, 0.184]
logit.2 0.103 4 3 238 56 0.054 [-0.147, 0.360] 0.119 [0.000, 0.334] 0.640 [0.573, 0.708] 0.178 [0.164, 0.193]
trees.2 0.075 60 241 0 0 0.000 [-0.179, 0.126] 0.332 [0.000, 0.332] 0.500*** [0.500, 0.500] 0.175 [0.157, 0.305]
knn.2 0.304 3 18 223 57 -0.025 [-0.144, 0.071] 0.074 [0.000, 0.200] 0.506*** [0.452, 0.560] 0.197 [0.172, 0.244]
rf.2 0.163 2 30 211 58 -0.091 [-0.211, 0.126] 0.043 [0.000, 0.159] 0.372 [0.306, 0.437] 0.194 [0.168, 0.289]
svm.2 0.074 8 48 193 52 -0.066 [-0.298, 0.218] 0.138 [0.000, 0.457] 0.460*** [0.391, 0.530] 0.179 [0.164, 0.244]
nen.2 0.105 0 0 241 60 0.000 [-0.394, 0.058] 0.000 [0.000, 0.316] 0.566*** [0.493, 0.640] 0.180 [0.159, 0.197]
logit.3 0.078 37 51 190 23 0.405 [-0.409, 0.467] 0.500 [0.086, 0.568] 0.803 [0.746, 0.860] 0.154 [0.109, 0.179]
trees.3 0.075 60 241 0 0 0.000* [-0.083, 0.396] 0.332* [0.113, 0.641] 0.500*** [0.500, 0.500] 0.175* [0.135, 0.207]
knn.3 0.154 23 30 211 37 0.259* [ 0.001, 0.389] 0.407 [0.140, 0.504] 0.730** [0.667, 0.792] 0.154 [0.122, 0.184]
rf.3 0.433 4 4 237 56 0.050*** [-0.129, 0.234] 0.118 [0.000, 0.385] 0.659*** [0.590, 0.727] 0.159 [0.129, 0.190]
svm.3 0.075 34 109 132 26 0.114* [-0.281, 0.438] 0.335 [0.000, 0.542] 0.572*** [0.510, 0.634] 0.175* [0.131, 0.190]
nen.3 0.148 39 53 188 21 0.430 [ 0.241, 0.496] 0.513 [0.000, 0.583] 0.804 [0.748, 0.860] 0.160 [0.151, 0.165]
logit.4 0.081 47 22 219 13 0.692 [ 0.029, 0.763] 0.729 [0.242, 0.786] 0.880 [0.832, 0.928] 0.132 [0.087, 0.211]
trees.4 0.072 16 15 226 44 0.204 [-0.108, 0.700] 0.352* [0.035, 0.786] 0.542*** [0.469, 0.615] 0.172* [0.091, 0.289]
knn.4 0.266 22 19 222 38 0.288 [-0.116, 0.446] 0.436 [0.000, 0.580] 0.600*** [0.531, 0.668] 0.167 [0.114, 0.235]
rf.4 0.262 9 36 205 51 0.001 [-0.373, 0.363] 0.171 [0.000, 0.491] 0.677*** [0.619, 0.734] 0.177 [0.071, 0.239]
svm.4 0.100 22 75 166 38 0.055 [-0.386, 0.393] 0.280 [0.000, 0.511] 0.576*** [0.514, 0.638] 0.197 [0.145, 0.752]
nen.4 0.274 24 3 238 36 0.388 [-0.012, 0.726] 0.552 [0.105, 0.727] 0.850** [0.794, 0.905] 0.132 [0.088, 0.205]

Note: Best performance on given dataset in bold. Stars indicate if the respective method’s performance is significantly worse than the best model’s per-
formance on the same dataset (∗∗∗/∗∗/∗ for the 1%/5%/10% significance level). For Ur, F1 and AUC higher values indicate better prediction performance,
while for BPS lower values are preferable. Numbers in brackets indicate 90% confidence bands. Model names reported in format “method.dataset”, where
datasets consist of the following sets of variables (1): credit and asset prices, (2) macro variables, (3) external imbalances, and (4) all variables (see also
Table B.6).
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Table C.8: Robustness: Out-of-sample backcast performance with a data sample split in 2005Q2

Threshold TP FP TN FN Ur F1 AUC BPS

logit.1 0.336 33 97 1271 78 0.226 [-0.060, 0.344] 0.274 [0.055, 0.292] 0.687 [0.643, 0.732] 0.075 [0.066, 0.143]
trees.1 0.100 27 131 1237 84 0.147 [-0.020, 0.315] 0.201 [0.014, 0.288] 0.561*** [0.514, 0.608] 0.120 [0.070, 0.350]
knn.1 0.179 78 605 763 33 0.260 [-0.013, 0.373] 0.196 [0.014, 0.294] 0.667 [0.620, 0.715] 0.086 [0.070, 0.215]
rf.1 0.195 50 372 996 61 0.179 [-0.003, 0.334] 0.188 [0.026, 0.240] 0.659 [0.615, 0.702] 0.105 [0.069, 0.192]
svm.1 0.146 82 780 588 29 0.169 [-0.003, 0.298] 0.169 [0.010, 0.329] 0.663 [0.609, 0.716] 0.101 [0.064, 0.202]
nen.1 0.360 27 117 1251 84 0.158 [-0.033, 0.334] 0.212 [0.000, 0.281] 0.606*** [0.560, 0.653] 0.085 [0.066, 0.153]
logit.2 0.226 94 1165 203 17 -0.005 [-0.219, 0.081] 0.137 [0.066, 0.181] 0.572 [0.524, 0.620] 0.494 [0.075, 0.819]
trees.2 0.109 74 878 490 37 0.025 [-0.119, 0.236] 0.139 [0.064, 0.205] 0.473*** [0.436, 0.511] 0.140 [0.069, 0.513]
knn.2 0.320 29 429 939 82 -0.052 [-0.125, 0.182] 0.102 [0.000, 0.179] 0.443 [0.394, 0.491] 0.140 [0.075, 0.450]
rf.2 0.362 70 653 715 41 0.153 [-0.068, 0.180] 0.168 [0.061, 0.201] 0.574 [0.522, 0.626] 0.175 [0.072, 0.457]
svm.2 0.183 85 1071 297 26 -0.017 [-0.089, 0.032] 0.134 [0.000, 0.142] 0.490*** [0.445, 0.535] 0.106 [0.070, 0.350]
nen.2 0.219 32 681 687 79 -0.210 [-0.218, 0.031] 0.078 [0.000, 0.142] 0.404 [0.357, 0.451] 0.146 [0.072, 0.567]
logit.3 0.223 71 473 895 40 0.294 [ 0.107, 0.407] 0.217 [0.155, 0.267] 0.711** [0.674, 0.747] 0.120 [0.069, 0.202]
trees.3 0.162 33 324 1044 78 0.060 [-0.134, 0.276] 0.141 [0.023, 0.233] 0.508*** [0.453, 0.563] 0.163* [0.099, 0.550]
knn.3 0.225 59 395 973 52 0.243 [ 0.031, 0.361] 0.209 [0.130, 0.241] 0.665*** [0.620, 0.709] 0.098 [0.069, 0.237]
rf.3 0.367 30 176 1192 81 0.142 [-0.003, 0.239] 0.189 [0.131, 0.225] 0.646*** [0.601, 0.691] 0.109 [0.074, 0.334]
svm.3 0.237 79 475 893 32 0.364 [ 0.142, 0.409] 0.238 [0.175, 0.265] 0.723 [0.685, 0.760] 0.110 [0.067, 0.249]
nen.3 0.303 73 445 923 38 0.332 [ 0.090, 0.409] 0.232 [0.154, 0.273] 0.721 [0.684, 0.758] 0.121 [0.093, 0.221]
logit.4 0.392 72 514 854 39 0.273 [ 0.003, 0.451] 0.207 [0.134, 0.290] 0.681 [0.631, 0.731] 0.237* [0.085, 0.640]
trees.4 0.040 60 340 1028 51 0.292 [ 0.068, 0.366] 0.235 [0.134, 0.286] 0.662 [0.620, 0.703] 0.171 [0.074, 0.237]
knn.4 0.318 56 483 885 55 0.151 [-0.044, 0.315] 0.172 [0.014, 0.256] 0.581*** [0.530, 0.632] 0.155 [0.080, 0.429]
rf.4 0.190 68 450 918 43 0.284 [ 0.059, 0.368] 0.216 [0.134, 0.280] 0.649** [0.599, 0.699] 0.141 [0.074, 0.204]
svm.4 0.189 81 916 452 30 0.060* [-0.035, 0.372] 0.146 [0.033, 0.313] 0.593*** [0.542, 0.644] 0.320 [0.081, 0.617]
nen.4 0.290 62 429 939 49 0.245 [ 0.015, 0.415] 0.206 [0.126, 0.290] 0.688 [0.643, 0.732] 0.148 [0.074, 0.385]

Note: Best performance on given dataset in bold. Stars indicate if the respective method’s performance is significantly worse than the best model’s per-
formance on the same dataset (∗∗∗/∗∗/∗ for the 1%/5%/10% significance level). For Ur, F1 and AUC higher values indicate better prediction performance,
while for BPS lower values are preferable. Numbers in brackets indicate 90% confidence bands. Model names reported in format “method.dataset”, where
datasets consist of the following sets of variables (1): credit and asset prices, (2) macro variables, (3) external imbalances, and (4) all variables (see also
Table B.6).

49



Figure C.1: Receiver-operator characteristics for baseline in-sample estimations, by model.
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Note: Different subplots correspond to the four different datasets. The ROC displays the relation of false

positive and false negative rates for different (constant) thresholds that can be applied to the probability

predictions in the data. The added points correspond to false positive and false negative rates of the

binary predictions derived from time-varying optimal thresholds, see Table C.1.
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Figure C.2: Robustness (preference parameter): Relative usefulness of in- and out-of-
sample estimation by model.
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Figure C.3: Robustness (data transformation): Relative usefulness of in- and out-of-
sample estimation by model.
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Figure C.4: Robustness (sample length): Relative usefulness of in- and out-of-sample
estimation by model.
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Figure C.5: Robustness (crisis database): Relative usefulness of in- and out-of-sample
estimation by model.
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9 Appendix D: Economic Interpretation

In this section, we would like to provide interested readers with the economic intuition
behind the predictions for the example of the logit.4 model. This model had the best
performance in our horse race, and encompasses all other models in terms of variables
used. Table D.1 contains coefficients of the in-sample estimation. The most important
variables in our model are the current account balance, credit-to-GDP, residential real-
estate prices and gross fixed capital formation. This is consistent with existing theoretical
and empirical evidence, which documents the vulnerability of the banking sector to many
different channels, as described in Section 3. We find that the vast majority of coefficients
have the expected sign. Credit growth above long-run trend increases the probability
of being in an early warning window, as do high residential real estate prices and high
equity prices. Thus, debt-financed asset price booms are found to be major drivers of crises
(Kindleberger and Aliber, 2005; Jordà et al., 2015). The positive coefficient on the gap of
gross fixed capital formation can be interpreted in a similar way: high levels of investment
in fixed capital may be driven by overly optimistic expectations, leading to problems when
future returns are lower than expected. Economic downturns, indicated by lower growth
and lower inflation rates, also increase the crisis probability (albeit insignificantly). Last
but not least, current account deficits and overvaluation of the real effective exchange rate
are signs of an uncompetitive and (external) debt-financed economy.

Table D.1: Logit coefficients (full sample)

Coefficient
Std. Marg. Stdev.
Error Effects recursive

Constant -2.771*** 0.113 -0.199 0.151
Total credit-to-GDP gap 0.531*** 0.102 0.038 0.033
Real residential real estate price gap 0.425*** 0.096 0.030 0.073
Real equity price gap 0.200* 0.108 0.014 0.029
Real GDP gap -0.141 0.123 -0.010 0.049
Inflation rate -0.104 0.119 -0.007 0.102
Gross fixed capital formation-to-GDP gap 0.499*** 0.106 0.036 0.018
Real 3-month money market rate 0.007 0.100 0.001 0.091
Current account-to-GDP ratio -0.63*** 0.093 -0.045 0.077
Real effective exchange rate gap 0.015 0.101 0.001 0.031
Real oil price gap 0.002 0.090 0.000 0.031

Note: This table reports coefficients, standard errors and marginal effects for the logit model using all
variables, estimated on all available observations. The model is estimated with standardized data to
make coefficients comparable. The last column shows the standard deviation of coefficient estimates
across recursive estimations.

Table D.1 also allows us to look at the average marginal effects, which are of particular
interest for the significant variables. Their average marginal effects, approximating the
effect of a one standard deviation change in the respective indicator on the predicted
crisis probability, are 1.4 percentage points for equity price gap, 3.0 percentage points for
residential real estate price gap, 3.6 percentage points for gross-fixed capital formation-to-
GDP gap, 3.8 percentage points for credit-to-GDP gap, and -4.5 percentage points for the
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current account balance. Compared to the unconditional probability of being in an early
warning window, which is just above 9.5%, these effects are substantial. In comparison to
that, the marginal effects of the insignificant variables are mostly negligible. Even though
the effects of the significant variables are sizeable, it has to be noted that the model
never implies a probability above 90% of being in an early warning window. For such a
probability, all important variables need to be around two standard deviations away from
their mean at the same time, which is an extremely rare event. This is in line with the
view that, while our observables may signal the buildup of vulnerabilities in probability,
there remains a substantial unpredictable component driving the ultimate realization or
non-realization of crises.

In addition to their economic and statistical significance, coefficients are quite sta-
ble over time. In our recursive out-of-sample forecasting exercise, we can observe how
(re-)estimated coefficients change across time, as more and more information becomes
available. To summarize this, the last column of Table D.1 (Stdev. recursive) reports
the standard deviation of coefficients across recursive estimations. As we can see, the
magnitude of changes in coefficients during the out-of-sample window is relatively small
for the significant coefficients, which is even more remarkable given the occurrence of the
great financial crisis during this time period. This suggests a degree of robustness of
the estimated model with respect to the addition of new information, which is promising
regarding the potential use of such models for future (true) out-of-sample predictions.
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