
Optimizing policymakers' loss functions in crisis prediction:

before, within or after? ∗

Peter Sarlin

Department of Economics at Hanken School of Economics

RiskLab Finland at Arcada University of Applied Sciences

Gregor von Schweinitz†

Halle Institute for Economic Research (IWH), Department of Macroeconomics

University of Leipzig, Institute for Theoretical Economics

∗Research of Gregor von Schweinitz was partly funded by the European Regional Development Fund through
the programme �Investing in your Future� and by the IWH Speed Project 2014/02. Parts of this work have been
completed at the Financial Stability Surveillance Division of the ECB DG Macroprudential Policy and Financial
Stability. The authors are grateful for the suggestions of two anonymous referees, useful comments from Bernd
Amann, Carsten Detken, Makram El-Shagi, Jan-Hannes Lang, Tuomas Peltonen and Peter Welz, and discussion at
the following seminars and conferences: 3rd HenU-INFER Workshop on Applied Macroeconomics, IWH Economic
Research Seminar, Goethe University Brown Bag Seminar, ECB Financial Stability Seminar, Deutsche Bundes-
bank Early-Warning Modeling Seminar and the 2015 CEUS Workshop. An online appendix to this paper can be
found at http://appliedmacro.org/index.php/special-issue/macroeconomic-dynamics. Data and code are supplied at
https://risklab.�/publications/thresholdoptimization.
†Corresponding author. Halle Institute for Economic Research, Department of Macroeconomics. Kleine Märkerstr.

8, 06108 Halle (Saale), Germany. Telephone: +49 345 7753 744. Email: gsz@iwh-halle.de

1



Optimizing policymakers' loss functions

2



Abstract

Recurring �nanial instabilities have led policymakers to rely on early-warning models to signal

�nancial vulnerabilities. These models rely on ex-post optimization of signaling thresholds on crisis

probabilities accounting for preferences between forecast errors, but comes with the crucial drawback

of unstable thresholds in recursive estimations. We propose two alternatives for threshold setting

with similar or better out-of-sample performance: (i) including preferences in the estimation itself

and (ii) setting thresholds ex-ante according to preferences only. Given probabilistic model output,

it is intuitive that a decision rule is independent of the data or model speci�cation, as thresholds

on probabilities represent a willingness to issue a false alarm vis-à-vis missing a crisis. We provide

real-world and simulation evidence that this simpli�cation results in stable thresholds, while keeping

or improving on out-of-sample performance. Our solution is not restricted to binary-choice models,

but directly transferable to the signaling approach and all probabilistic early-warning models.

Keywords: Early-warning models; Loss functions; Threshold setting; Predictive performance

JEL-Classi�cation: C35; C53; G01
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1 Introduction

The recent �nancial crisis has stimulated research on early-warning models. These models signal

macro-�nancial risks and guide macroprudential policy to mitigate real implications of an impending

crisis. Early-warning models mostly involve two parts: (i) an estimated measure of crisis vulnerabil-

ity, and (ii) a threshold transforming these measures into binary signals for policy recommendation.

The currently predominant approach separates the two parts and optimizes thresholds ex-post. This

ignores estimation uncertainty, provides time-varying thresholds, and results in suboptimal policy

guidance out-of-sample. We propose two alternatives that avoid these problems: within-estimation

and ex-ante threshold setting.

The �rst part of an early-warning model is the estimation method. The two dominating ap-

proaches for this are binary-choice methods and the signaling approach. Binary-choice analysis

(like probit or logit models) was already applied by Frankel and Rose (1996) and Berg and Pattillo

(1999) to exchange-rate pressure, and has more recently been the predominant approach (Lo Duca

and Peltonen, 2013; Betz, Opric , Peltonen, and Sarlin, 2014). The signaling approach is sim-

pler in that it only monitors univariate indicators vis-à-vis thresholds. It originally descends from

Kaminsky and Reinhart (1999), but has also been common in past years (Alessi and Detken, 2011;

Knedlik and von Schweinitz, 2012). The second part of an early-warning model concerns the setting

of thresholds that transform probabilities (univariate indicators for the signaling approach) into

signals. This transformation is based upon loss functions tailored to the preferences of a decision-

maker.1 These loss functions rely on the notion of a policymaker facing costs for missing crises

(type 1 errors) and issuing false alarms (type 2 errors). Di�erent versions of a loss function have

for example been introduced by Demirgüç-Kunt and Detragiache (2000), Alessi and Detken (2011)

and Sarlin (2013).

Common practice implies an estimation of a binary-choice model and an ex-post optimization

of the threshold within a loss function given prede�ned preferences for type 1 and type 2 errors.

This approach implies several economic and econometric drawbacks. Viewing the problem from

an econometric perspective, it ignores uncertainty about the true data-generating process (DGP).

Thus, optimized thresholds falsely react to and vary with probability estimates. They �nd signal

1We do not herein summarize measures used for assessing model robustness that do not explicitly provide guidance
on optimal thresholds, such as the Receiver Operating Characteristics curve and the area below it.
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in noise by exhibiting an in-sample over�t and (more often than not) an out-of-sample under�t.

Accordingly, as optimized tresholds react to probability estimates, new observations and increased

knowledge about the true DGP lead to unwarranted time variation in thresholds. For policy pur-

poses, this is problematic as the rationale for policy implementation needs to descend from changes

in vulnerability rather than changing thresholds.

This paper postulates that early-warning models should abstain from threshold optimization.

Instead, we present two alternatives to the currently predominant approach for threshold setting:

within-estimation and ex-ante threshold setting. The �rst alternative relies on a weighted binary-

choice model, where the weights are given by the above mentioned preferences. In case of the

loss function of Sarlin (2013) (our preferred loss function, see the next section for a more detailed

description), weights are given by preferences. If a large preference is given to correctly signaling

crises, these observations will receive a large weight in the estimation. The estimation shifts �tted

values in a way that an invariant threshold of 50% can now be employed to transform probabilistic

into binary forecasts. The second alternative is based on the usual binary-choice model, but sets

probability thresholds ex-ante according to preferences. It can be proven that this is the long-run

optimal threshold independently of the DGP. Given an unbiased probabilistic model, it is intuitive

that a decision rule is independent of the exact data or model speci�cation. By way of a simple

example, the decision of signaling for probabilities above 20% indicates a willingness to issue a false

alarm (80%) vis-à-vis missing a crisis (20%). In terms of preferences, this means that the ex-ante

optimized threshold for a preference parameter µ (equal to 0.8 in the above example) is set at a

value of 1−µ for the loss function of Sarlin (2013). Table 1 reports the three alternative approaches

to selection for two di�erent loss functions at a glance.

The alternative approaches have three bene�ts. First, even in recursive estimations they assure a

stable threshold, because thresholds only depend on preferences which are exogenous to the model.

With preferences and thresholds being exogenous, time-varying policy guidanec only depends on

time-varying macro-�nancial vulnerability. Second, we show that within-estimation and ex-ante

threshold setting on average improves out-of-sample predictive power. We can show that threshold

optimization does not account for estimation uncertainty. Thus, it introduces a positive bias of

in-sample performance, and has on average a negative e�ect on out-of-sample performance.2 Third,

2This was also indicated by El-Shagi, Knedlik, and von Schweinitz (2013) and later by Holopainen and Sarlin
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Table 1: Optimization approaches at a glance

Current approach Alternative 1 Alternative 2

Estimation method Binary Choice Weighted Binary
Choice

Binary Choice

Loss function Sarlin (2013)
Preference parameter µ µ µ
Observation weights µ / 1− µ
Threshold λ∗ minimizes loss

function in sample
0.5 λinf = 1− µ

Loss function Alessi and Detken (2011)
Preference parameter θ θ θ

Observation weights θ
P1

/ 1−θ
P2

Threshold λ∗ minimizes loss
function in sample

0.5 λinf = (1−θ)P1

(1−θ)P1+θP2

Note: Preference parameters µ, θ ∈ [0, 1] relate to the weights of di�erent errors. P1 denotes the share of pre-crisis
periods, while P2 represents the probability of tranquil periods (P1 + P2 = 1).

ex-ante threshold selection simpli�es the process, as the second optimization step of the traditional

approach is left out.

These bene�ts, and the underlying critique, can easily be extended to more general settings.

First, the critique is not restricted to the speci�c loss functions analyzed in this paper, but applies

to any loss or usefulness function optimization that ignores estimation uncertainty. In general,

using di�erent loss functions does not alleviate the described problem. Second, the critique extends

to the signaling approach that consists solely of the optimization step. However, the equivalence

of the signaling approach to a univariate probit model implies that our proposed solutions equally

apply. Third, the proposed alternatives extend to methods beyond binary-choice models: accounting

for preferences within estimation is directly transferable to all methods used in the early-warning

literature, while ex-ante threshold setting is valid for any model yielding unbiased crisis probabilities.

We provide two-fold evidence for our claims concerning threshold stability and model perfor-

mance. First, we make use of two real-world cases to illustrate both threshold stability and in-

sample versus out-of-sample performance for the three approaches. Speci�cally, we replicate the

early-warning model for currency crises in Berg and Pattillo (1999) and the early-warning model

for systemic �nancial crises in Lo Duca and Peltonen (2013). Second, we run simulations with

(2015), which both show and account for the fact that a positive usefulness can be insigni�cant. We approach the
problem of uncertainty and signi�cance from a di�erent angle.
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di�erent DGP to illustrate the superiority of weighted maximum-likelihood estimation and ex-ante

thresholds vis-à-vis ex-post optimization of thresholds on data with known patterns. All exercises

are performed for the loss functions of Sarlin (2013) and Alessi and Detken (2011).

The paper is structured as follows. The next section presents the methods, followed by a discus-

sion of our experiments on real-world data in the third section and our exercises on simulated data

in the fourth section. The last section concludes.

2 Estimating and evaluating early-warning models

This section presents the three methods analyzed in this paper, namely the currently used approach

to derive an early-warning model as well as two alternatives. All three methods consist of two

elements: the estimation of a binary-choice model and the setting of a probability threshold for the

classi�cation into signals. These two elements will be described together with the current approach

in the �rst subsection, while the following subsections introduce the two alternatives.

In all cases, the binary event to be explained is a pre-crisis variable C(h). The pre-crisis variable

C(h) is set to one in the h periods before a crisis, and zero in all other, so-called �tranquil�, periods.3

That is, Cj(h) = 1 signi�es that a crisis is to happen in any of the h periods after observation

j ∈ {1, 2, . . . , N}, while Cj(h) = 0 indicates that all h subsequent periods are classi�ed as tranquil.

2.1 Binary-choice models and ex-post thresholds

Estimation: Binary-choice models (logit or probit models) have been the most important methods

in the early-warning literature (Frankel and Rose, 1996; Kumar, Moorthy, and Perraudin, 2003;

Fuertes and Kalotychou, 2007; Davis and Karim, 2008, see among many others). In a standard

3In most applications, one would exclude actual crisis periods and possibly even some periods after a crisis from
the estimation altogether, as they may not be tranquil, and should therefore not be used for early-warning purposes
(Bussière and Fratzscher, 2006).
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binary-choice model, it is assumed that the event Cj(h) is driven by a latent variable

y∗j = Xjβ + ε

Cj(h) =


1 , if y∗j > 0

0 , otherwise

.

Under the assumption ε ∼ N (0, 1), this leads to the probit log-likelihood function

LL(C(h)|β,X) =
N∑
j=1

1Cj(h)=1 ln(Φ(Xjβ)) + 1Cj(h)=0 ln(1− Φ(Xjβ)),

which is maximized with respect to β. If we assume a logistic distribution of errors, the likelihood

function changes only with respect to a distribution function F , which is logistic instead of normal.

Table 2: A contingency matrix.
Actual class Cj

Pre-crisis period Tranquil period

Predicted class Sj

Signal

Correct call False alarm

True positive (TP) False positive (FP)

Rel. cost: 0 Rel. cost: 1− µ

No signal

Missed crisis Correct silence

False negative (FN) True negative (TN)

Rel. cost: µ Rel. cost: 0

Threshold setting: The model returns probability forecasts pj = P(y∗j > 0) for the occurrence of

a crisis. While the level of crisis probabilities are of interest, a policymaker is mainly concerned with

whether the probability ought to trigger (or signal) preventive policy measures. Thus, estimated

event probabilities pj are turned into binary point predictions Sj by assigning the value of one if

pj exceeds a threshold λ ∈ [0, 1] and zero otherwise. The resulting predictions Sj and the true

pre-crisis variable Cj(h) can be presented in a 2 × 2 contingency matrix, see Table 2. Based upon

the threshold λ, the contingency matrix allows us to compute a number of common summarizing

measures, such as unconditional probabilities P1 and P2, and type 1 and 2 error rates T1 and T2.
4

It should be noted that all entries of the contingency matrix, and hence all measures based upon

4Following the literature, the measures are de�ned as follows: P1 = P(Cj(h) = 1) = (TP + FN)/N , P2 = 1− P1,
T1 = P(Pj = 0|Cj = 1) = FN/(FN + TP ), and T2 = P(Pj = 1|Cj = 0) = FP/(FP + TN).
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its entries, depend on the threshold λ.

An intuitive threshold would be 50%. However, as crises are (luckily) scarce and (sadly) often

very costly, one would usually choose a threshold below 50% in order to balance the frequency and

costs of the two types of errors.5 The entries of the contingency matrix, as well as error rates, can

be used to de�ne a large palette of loss functions to optimize the threshold λ. Three components

de�ne these measures: unconditional probabilities, type 1 and 2 error rates, and error preferences.

We mainly use the the loss and usefulness measures de�ned in Sarlin (2013): To set policymakers'

preferences of individual errors in relative terms (including economic and political costs, among

others), falsely predicted events (FP) get a weight of µ ∈ [0, 1], missed events (FN) a weight of

1 − µ. That is, we assume that the cost of falsely predicting a crisis is µ, the cost of missing

a crisis is 1 − µ, while correct predictions incur zero costs to the policymaker, see also Table 2.

Accordingly, the preference parameter µ is a free parameter that should in practice be set ex-ante

by the policymaker. In practice, it is often chosen around the share of tranquil periods P2 (around

80% in most samples).

From the three components (classi�cation threshold λ and error rates, preference parameter µ,

share of pre-crisis and tranquil periods), three equivalent measures are derived. The �rst is a loss

function L(µ) of preference-weighted errors, the second is absolute usefulness Ua(µ) that relates the

loss of the model to disregarding the model altogether, and the third is a scaled relative usefulness

Ur(µ) that relates absolute usefulness to the maximal achievable usefulness:

L(µ) = µP1T1 + (1− µ)P2T2 = µFN/N + (1− µ)FP/N.

Ua(µ) = min(µP1, (1− µ)P2)− L(µ).

Ur(µ) =
Ua(µ)

min(µP1, (1− µ)P2)
.

The relation between these three measures is strictly monotonic in thresholds: suppose the

threshold λ is decreased. There will be more false positives and less false negatives. Suppose further

that the change in classi�cation errors is such that the loss function increases. Then, absolute and

5In spirit, this is very similar to the �nding of Riccetti, Russo, and Gallegati (2018), that overly tight regulation
puts too much of a burden on credit availability, while overly loose regulation increases the probability of �nancial
crises.
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relative usefulness decrease, because the �rst summation term of the absolute loss function and the

denominator of the absoluate loss function (min(µP1, (1−µ)P2)) is strictly positive and independent

of thresholds. When interpreting models, we can hence focus mainly on Ur. The current approach

in early-warning modeling chooses the threshold that optimizes the three measures (loss function,

absolute and relative usefulness) simultaneously based on the results of the probabilistic model. We

call this the optimized threshold λ∗.

While the optimized threshold λ∗ produces the best in-sample �t given preferences µ, it has

two undesirable properties. First, it is not an analytical function of the preferences, but also

depends on the realization of the data-generating process (DGP). Thus, if new data are added to

the sample, the optimized threshold will most likely change. This is extremely relevant in practice,

where the early-warning model is estimated recursively over time, re-optimizing the threshold with

every new estimation. Second, good in-sample performance is not necessarily a sign of good out-

of-sample performance. In principle, the best out-of-sample performance would be achieved by the

threshold that maximizes usefulness out-of-sample. Thus, the optimized threshold λ∗ may prove to

be suboptimal out-of-sample.

Alternative speci�cations: The loss function of Alessi and Detken (2011) is conceptually close,

but preferences θ apply to type 1 and type 2 error rates instead of shares of all observations:

LAD(θ) = θT1 + (1− θ)T2.6 In practice, values of θ around 0.5 have received most attention. That

is, the loss function of Alessi and Detken (2011) measures error relative to the class in which they

can occur (false positives can only occur in tranquil periods). The loss function of Sarlin (2013) � by

taking errors as share of all observations � rather takes an observation-speci�c mindset. However,

if we set θ = µP1

µP1+(1−µ)P2
, then the loss function of Alessi and Detken (2011) becomes

LAD(θ) = LAD
(

µP1

µP1 + (1− µ)P2

)
=
µP1T1 + (1− µ)P2T2
µP1 + (1− µ)P2

=
1

µP1 + (1− µ)P2
L(µ).

That is, the two loss functions are equal (up to a factor). The correspondence between the

6There exists a myriad of alternative performance measures with larger di�erences. Two other measures have been
commonly applied in the early-warning literature. The noise-to-signal ratio (Kaminsky and Reinhart, 1999) has been
shown to lead to corner solutions, resulting in a high share of missed crisis episodes if crises are rare (Demirgüç-Kunt
and Detragiache, 2000; El-Shagi et al., 2013). Bussière and Fratzscher (2008) and Fuertes and Kalotychou (2007) use
a slightly di�erent loss function. Many additional measures are summarized in Wilks (2011).
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preference parameters µ and θ has several consequences. First, it has to be noted that the factor

1
µP1+(1−µ)P2

does not depend on model output and thus also not on the threshold. Thus, if θ and

µ are set correspondingly, they result in an identical threshold λ (independent of the approach

taken to set λ). That is, all results reported in later sections equally apply to both preference

settings. Second, to assure that costs of individual (i.e., observation-speci�c) errors are re�ected by

preferences, θ should vary with the probability of the two classes P1 and P2. In recursive estimations,

θ should thus be time-varying.

An alternative to binary-choice models in the early-warning literature is the signaling approach

(Kaminsky and Reinhart, 1999). It derives predictions from applying a threshold directly on in-

dicator values, and proceeds with calculating the contingency matrix and a usefulness measure as

described above. The large appeal it has for policymakers' is due to the direct interpretability of the

results and the low data requirements. It is straightforward to show that the signaling approach can

be directly mapped to a univariate binary-choice model. In a univariate binary choice model (with

a positive parameter β), higher indicator values are associated with higher probabilities. Therefore,

it makes conceptually no di�erence if a threshold is searched and set on indicator values or proba-

bilities from the associated univariate binary choice model. Thus, all results presented in this paper

extend to the signaling approach as well.

2.2 Alternative 1: Thresholds within binary-choice models

Instead of using preferences µ to optimize thresholds, one could also include preferences as class

weights in the log-likelihood function of the binary-choice model (King and Zeng, 2001). Thus,

pre-crisis observations in the estimation sample will receive a higher weight in the likelihood if the

policymaker aims at avoiding false negatives. The log-likelihood function of the weighted probit

model is the following:

LL(C(h)|β,X,w) =

N∑
j=1

1Cj(h)=1w1 ln(Φ(Xjβ)) + 1Cj(h)=0w2 ln(1− Φ(Xjβ)).

For the usefulness function of Sarlin (2013), we set w1 = µ and w2 = 1 − µ.7 In the case of

7This is in principle equivalent to the approach of King and Zeng (2001), where weights are normalized to have a
sample mean of unity (i.e., w1 = µ

µP1+(1−µ)P2
and w2 = 1−µ

µP1+(1−µ)P2
).
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Alessi and Detken (2011), we use weights w1 = θ/P1 and w2 = (1− θ)/P2.

Class-speci�c weights have previously been used for other purposes in binary-choice models.

Manski and Lerman (1977) and Prentice and Pyke (1979) use them to adjust for non-representativeness

of an estimation sample in cases where an average e�ect for the whole population is of interest. In

other disciplines, (penalized) weights are one possibility to avoid an estimation bias in severely un-

balanced samples with an absolute low number of events (Oommen, Baise, and Vogel, 2011; Maalouf

and Siddiqi, 2014). All of these strategies share the same conceptual goal with our proposal. The

imbalance introduced in our sample is due to the di�erences in preferences, i.e. di�erent weights of

type 1 and type 2 errors in the loss function, and is thus independent of class frequencies. Setting

weights according to preferences accounts for the imbalance of errors in the loss function.

This function can be maximized just as easily as the standard binary-choice model. However,

the resulting �tted values should be interpreted as preference-adjusted probabilities. The appealing

feature of the weighted binary-choice model is that optimizing a probability threshold ex-post is

not necessary anymore. Instead, the intuitive threshold of λw = 50% already accounts for all policy

preferences captured in µ (or θ). This provides a means to replace ex-post threshold optimization

in both multivariate binary-choice and univariate signaling exercises.

An advantage of this approach is the possible extension to full observation-speci�c weights. In a

cross-country study, one could argue that the potential loss of an error depends not only on the type

of error, but also on the (time-varying) size of the a�ected economy (see Sarlin (2013)). A second

advantage is that this extension can be applied to all methods that employ maximum-likelihood

estimation. Yet, weighted binary-choice models come at the disadvantage that di�erent preferences

have a direct impact on �rst-stage estimation results. Thus, when the early-warning model is used

with a set of di�erent preferences, the outcome does not only di�er in the contingency matrix, but

also in di�erent probability and parameter estimates. Moreover, in the case of the loss function of

Alessi and Detken (2011) the dependence of class weights on class probabilities P1 and P2 may prove

to be problematic as weights will in general not be constant in a real-time recursive estimation.

2.3 Alternative 2: Ex-ante thresholds in binary-choice models

Our �nal approach proposes setting the threshold before estimating the model. The choice of

the long-run optimal threshold is based on an argument already put forward by classical decision
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theory in the vein of the seminal contributions by Wald (1950). First, we note that the selection

of a threshold is a decision rule. If the (estimated) probability is above the threshold, a signal

is given, guiding policy towards action. For probabilities below the threshold, no signal is given.

Savage (1951) shows that the optimal decision rule only depends on the costs of di�erent outcomes

in the contingency matrix. Thus, a threshold λ can be derived independently of the data-generating

process. Instead, λ should be set at a probability of vulnerability such that a policymaker is in

expectation indi�erent between a signal and no signal. A classic example is the decision whether

or not to carry an umbrella: carrying an umbrella incurs a cost, as does standing in the rain

unprotected. Thus, a person would always decide to take an umbrella with her if the cost of

carrying one are lower than the expected disutility of being caught in the rain.

We call the threshold given by this optimal decision rule the long-run optimal threshold λ∞. As

correct signals have no costs, policymakers should choose a probability threshold which equalizes

total costs from false negatives and false positives. The online appendix provides a mathematical

derivation of λ∞ for the usefulness functions of Sarlin (2013) and Alessi and Detken (2011). It is

shown that policymakers are indi�erent between a signal and no signal at a threshold of

λ∞ =


1− µ, for the loss function of Sarlin (2013)

(1−θ)P1

(1−θ)P1+θP2
, for the loss function of Alessi and Detken (2011)

. (1)

In general, higher costs of missed events (i.e., a higher µ or higher θ) will lower the long-run optimal

threshold, increasing the frequency of false alarms and reducing the frequency of missed events.

The intuition for setting λ∞ = 1 − µ in the case of Sarlin (2013) is the following: For every

possible threshold λ, the share of false negatives and false positives is just the integral over the

respective areas in Figure 1. Let's assume for the sake of the argument, that observations are

equally distributed. Then the share of false negatives would be
∫ λ
0 pdp = λ2/2, and the share of

false positives would be
∫ 1
λ (1− p)dp = (1−λ)2/2. Minimizing the loss function over λ now returns

λ∞ = 1− µ.

The long-run optimal thresholds λ∞ for the loss function of Alessi and Detken (2011) depends not

only on policymakers preferences, but also on the frequency of classes P1 and P2. The reason is again

that the loss function depends on error rates. In practice, class frequencies have to be estimated.
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Figure 1: Type 1 and type 2 error shares at di�erent event probabilities.
Note: The total share of errors (FN/N and FP/N) is the area under the triangle bounded by the threshold λ.

Thus, long-run optimal thresholds in recursive estimations will vary with these estimates.

3 Real-world evidence of threshold setting

This section illustrates early-warning modeling and threshold setting with two real-world examples.

With these exercises, we in particular focus on illustrating challenges with threshold stability when

modeling over time. We test the three di�erent approaches for deriving early-warning models

and thresholds: (i) binary-choice models with optimized thresholds, (ii) weighted binary-choice

models, and (iii) binary-choice models with pre-set thresholds. We show that in addition to unstable

thresholds, out-of-sample utility with optimized thresholds is on average lower than in our two

alternative approaches.

3.1 Two datasets

We replicate the (logit) early-warning model for systemic �nancial crises by Lo Duca and Peltonen

(2013) and the (probit) early-warning model for currency crises by Berg and Pattillo (1999).

The �rst model is the logit model of systemic �nancial crises of Lo Duca and Peltonen (2013)

(referred to as LDP). The dataset includes quarterly data for 28 countries, 18 emerging market

and 10 advanced economies, for the period 1990Q1 to 2010Q4 (a total of 1,729 observations).
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The crisis de�nition uses a Financial Stress Index (FSI) with �ve components: the spread of the

3-month interbank rate over the 3-month government bill rate, quarterly equity returns, equity

index volatility, exchange-rate volatility, and volatility of the yield on the 3-month government

bill. Following LDP, a crisis is de�ned to occur if the FSI of an economy exceeds its country-

speci�c 90th percentile. That threshold on the FSI de�nes 10% of the quarters to be systemic

events. It is derived such that the events led, on average, to negative consequences for the real

economy. To enable policy actions for avoiding a further build-up of vulnerabilities, the focus is

on identifying pre-crisis periods with a forecast horizon of six quarters. This goal is achieved by

employing 14 macro-�nancial indicators that proxy for a large variety of sources of vulnerability,

such as asset price developments, asset valuations, credit developments and leverage, as well as

traditional macroeconomic measures, such as GDP growth and current account imbalances. The

variables are used both on a domestic and a global level, where the latter is an average of data

for the Euro area, Japan, UK and US. The dataset is divided into two partitions: in-sample data

(1990Q4 to 2005Q1) and out-of-sample data (2005Q2 to 2009Q2, out of which LDP use only data

until 2007Q2 for analysis). Figure 2 shows the share of pre-crisis observations at every point in

time. It should be noted that the out-of-sample data contain the run-up to the great �nancial crisis,

increasing the unconditional probability of being in an pre-crisis window from 19% in-sample to

36% out-of-sample, which we also indicate in the �gure.

The second model is the probit model for currency crises by Berg and Pattillo (1999) (referred

to as BP). The dataset consists of �ve monthly indicators for 23 emerging market economies from

1986:1 to 1996:12 with a total of 2,916 country-month observations: foreign reserve loss, export loss,

real exchange-rate overvaluation relative to trend, current account de�cit relative to GDP, and short-

term debt to reserves. To control for cross-country di�erences, each indicator is transformed into its

country-speci�c percentile distribution. In order to date crises, BP use an exchange market pressure

index. A crisis occurs if the weighted average of monthly currency depreciation and monthly declines

in reserves exceeds its mean by more than three standard deviations. BP de�ne an observation to be

in a vulnerable state, or pre-crisis period, if it experienced a crisis within the following 24 months.

To replicate the set-up in BP, the data is divided into an estimation sample for in-sample �tting

from 1986:1 to 1995:4, and a test dataset for out-of-sample analysis from 1995:5 to 1996:12 (around

15% of the sample). Figure 3 shows again the share of pre-crisis observations over time, together
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Figure 2: Frequency of pre-crisis periods, full sample, LDP model.

with the in-sample and out-of-sample mean. Despite the short period of the test sample, nearly

25% of all events happen in that window due to the Asian crisis.

One obvious di�erence between the two models is that currency crises and the preceding early-

warning windows (BP) are much more equally distributed over time than systemic �nancial crises.

The strong clustering of �nancial crises, in turn, could lead to imprecise estimates of the true data-

generating process. In the LDP case, the estimated unconditional probability of being in an early-

warning window will �uctuate around the true probability, with the �uctuations being large and

persistent. Thus, new crisis observations in a recursive analysis may a�ect in-sample probability

estimates and potentially also thresholds. In principle, this could warrant a certain variation of

optimized thresholds λ∗ around the long-run threshold λ∞.8 However, this variation would still be

problematic in real-time analysis, as full real-time knowledge of the �status� of current observations

(if they are in an early-warning window before a crisis or not) becomes only available in the future,

when the full early-warning horizon has passed.

8If crises are equally costly and if probability estimates do not increase, a higher frequency of crises could imply
lower thresholds.
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Figure 3: Frequency of pre-crisis periods, full sample, BP model.

3.2 Real-time thresholding

The main proposition of this paper is that ex-post threshold optimization leads to unwarranted

variation in thresholds, and that this is problematic for policy. New observations increase knowl-

edge on the true data generating process and should thus a�ect estimates of crisis probabilities.

However, to the extent that these estimates are unbiased, new observations should not have an

e�ect on thresholds. Put di�erently, the rational of recommendations for policy action (i.e., if

estimated probabilities are above or below the threshold) should descend from changes in crisis vul-

nerability rather than changing thresholds. Especially for policymakers, it should be problematic

to take di�erent actions based on identical probability estimates, only because of small variations in

thresholds, everything else equal. Indeed, we would argue that only policy preferences should a�ect

thresholds (which is our reason to prefer the usefulness function of Sarlin (2013)). However, in re-

ality we observe sometimes strong variations in optimized thresholds. Moreover, we �nd that these

time-varying thresholds are only optimal for in-sample data, but generate on average suboptimal

signals out-of-sample.

The �rst line of evidence that we put forward is based upon recursive real-time estimations.

With the same division of data as in the two original papers, we explore the characteristics and
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performance of the three approaches when applying them recursively over the out-of-sample part of

the data. The recursive analysis implies that we use information available at each period t to derive

model output and set optimal thresholds for the same period in question.9 This mimics a real-time

setting when applying early-warning models.

The variability of thresholds in ex-post optimization (λ∗) is a major source of uncertainty (and

potentially confusion). We illustrate this by showing threshold variation for the LDP model with

ex-post optimization, where recursive tests run from 2005Q2 to 2009Q2. Figure 4 shows a heatmap

coloring of thresholds λ∗ for every quarter in that time and for di�erent preferences µ. For a given

µ value (horizontal row), a model with stable thresholds would have a constant color over time. We

can observe that this is not the case. For instance, for µ = 0.8 the thresholds seem to vary between

13% and 28%. This points to signi�cant uncertainty that would have serious implications in policy

use. A similar result can be seen in the corresponding Figure A.1 in Appendix B for the BP model,

where recursive tests run from 1995:5 to 1996:12.10

As discussed in the description of datasets, �uctuations could in principle be warranted by the

clustering of crises. We report the development of optimized thresholds λ∗ in the recursive estimation

9Thus, we recalculate the pre-crisis variable in every recursive step given available information on the crisis variable.
10The original authors do not perform recursive out-of-sample analysis.
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for four di�erent preference parameters µ = {0.2, 0.5, 0.8, 0.95} together with the frequency of crises

in Figure 5.11 That is, we test over di�erent potential preferences that a policymaker may have.

High values of µ = {0.8, 0.95} give a strong preference to avoiding crises, which accounts for the

fact that missing a crisis may be very costly. µ = 0.5 gives equal weights to both errors and

is a setting, where the weighted models boil down to standard binary-choice estimation (without

threshold optimization). µ = 0.2 gives strong preference to avoiding false alarms, which accounts for

high costs related to external announcements and reputation losses. Overall, µ = 0.8 is probably the

most realistic choice of preference parameter. Crucially, there seems to be no systematic link between

the occurrence of crises and threshold variation in the dataset. That is, thresholds, independent of

the preferences, do not vary systematically with clustered �nancial crises. Instead, the variation of

thresholds seems to be largely driven by noise.

In case of the BP model, we see in general less threshold �uctuation (see Figure A.2 in the

Appendix). This is consistent with the observation that pre-crisis windows are more or less equally

distributed across the sample. However, another point of criticism with respect to ex-post threshold

11Results regarding the performance under the usefulness function of Alessi and Detken (2011) are very similar
and reported in the online appendix.
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optimization can be raised: when using the usefulness function of Alessi and Detken (2011), the

thresholds for θ = 0.5 and θ = 0.7 nearly overlap. Thus, the model seems to have di�culties �nding

truly di�erent thresholds for very di�erent preference parameters.

3.3 Performance comparison

In this subsection, we show that the variation of thresholds can lead to worse out-of-sample per-

formance. Table 3 reports the usefulness for the abovementioned preference parameters and the

three di�erent logit models (LDP), together with the probability that our proposed alternatives

outperform the model with optimized thresholds. This probability is derived from 1'000 draws of a

panel block bootstrap over (recursive) in-sample data with a block-length of 12 quarters.12

Table 3: Performance for LDP, recursive oos estimation 2005Q2-2009Q2

method TP FP FN TN L Ua Ur prob

µ=0.2
Logit opt threshold 7 21 157 166 0.137 -0.044 -0.470
Weighted logit 8 21 156 166 0.137 -0.043 -0.463 0.516
Logit set threshold 6 18 158 169 0.131 -0.038 -0.402 0.819

µ=0.5
Logit opt threshold 51 71 113 116 0.262 -0.028 -0.122
Weighted logit 40 66 124 121 0.271 -0.037 -0.159 0.466
Logit set threshold 40 66 124 121 0.271 -0.037 -0.159 0.466

µ=0.8
Logit opt threshold 104 132 60 55 0.212 -0.105 -0.989
Weighted logit 113 128 51 59 0.189 -0.083 -0.775 0.810
Logit set threshold 117 146 47 41 0.190 -0.084 -0.786 0.706

µ=0.95
Logit opt threshold 155 167 9 20 0.048 -0.022 -0.807
Weighted logit 152 160 12 27 0.055 -0.029 -1.075 0.642
Logit set threshold 152 167 12 20 0.056 -0.030 -1.112 0.586

Note: The table reports performances Sarlin (2013) of recursive estimationsin the LDP model over an out-of-sample
period from 2005Q2 to 2009Q2 for the three di�erent methods and four preference choices.

We can �rst observe that absolute and relative usefulness is always negative, because the fre-

quency of crises out-of-sample is much higher than in-sample. However, even though usefulness is

negative, the models with ex-ante or within threshold selection are nearly always on average better

12We combine the two approaches by El-Shagi et al. (2013) and Holopainen and Sarlin (2015). To allow measuring
uncertainty around usefulness (taking countries as given) we use a simple panel block bootstrap that accounts for
cross-sectional and autocorrelation of both right and left-hand side variables and pairs events and indicators.
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than their counterparts with ex-post threshold optimization. This holds especially for preference

parameters that put a higher weight on the less frequent and more costly type-1 errors (false neg-

atives). For the most realistic preference parameter µ = 0.8, we see for example that our two

proposals signal much more often (correctly) than an early-warning model with optimized thresh-

olds would. If we examine the data themselves (where signals should ideally be sent throughout

the full early-warning window of one to six quarters before the crisis), we see that the additional

correct warnings are mostly located at the beginning of the early-warning windows. This makes

sense as signals should �get stronger� once a crisis becomes more and more imminent. However, in

one example (Hong-Kong during the great �nancial crisis), optimized thresholds would have only

picked up on the upcoming crisis half a year before it actually happened, while our two approaches

would have been able to send signals four quarters earlier.

A similar result can be derived (i) for all possible policy preferences µ and (ii) for the usefulness

function of Alessi and Detken (2011). For computational reasons, we perform a one-o� split of the

data instead of a recursive out-of-sample analysis. That is, we derive probabilities and signals for

observations between 2005Q2 and 2009Q2 based on estimates on data prior to 2005Q2. As above,

we use a panel-block bootstrap to derive the probabilities that our two proposals outperform ex-

post threshold optimization. Our two alternatives outperform optimized thresholds in more than

50%, independently of the employed usefulness function and nearly independently of preferences.13

We thus �nd that our alternatives are better than the current approach in the majority of cases,

and that their average out-of-sample performance is higher. Moreover, the weighted logit is slightly

better than threshold setting ex-ante for µ ≥ 0.7 (or θ > 0.3), both in terms of mean usefulness and

the probability of outperformance.

The �ndings above are largely corroborated by the BP-model. However, in this case we �nd

larger areas where threshold optimization seems on average to be better than our two proposals. A

possible reason for this is that the uncertainty regarding (short-run) optimal thresholds is lower than

in the LDP case, as indicated by the lower degree of threshold variability during the out-of-sample

period, see Figure A.1 in the Appendix.

13For a visual result, we refer to Figure B.3 in the online appendix, which also reports corresponding results for
the BP model.
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4 Comparing optimal thresholds with simulated data

The real-world experiments allowed us to observe obvious di�erences in threshold setting. However,

it did not allow us to show variation in thresholds and performance di�erences on a scale beyond

single cases. In this section, we rely on simulated data to further strengthen the evidence in this

paper.

To illustrate di�erences among the three approaches to threshold selection, we provide a large

number of experiments on a range of di�erent simulated data. Given that λ∗ is selected to optimize

the loss function on in-sample data, we expect λ∗ to perform best on that part of the data. However,

we are mainly interested in the out-of-sample performance of the the three approaches to threshold

selection. There, we expect the optimized threshold to fare much worse, possibly to be outperformed

by our proposed alternatives.

4.1 Randomness of thresholds

As an illustrative example, let us take a look at a data generating process, where explanatory

variables and events are unrelated, and where the event probability is 50% in every period. Figure 6

shows the in-sample Receiver Operator Characteristics (ROC) curves from a probit model for three

simulations with di�erent numbers of observations N . A ROC curve shows the trade-o� between

type 1 errors and type 2 errors at di�erent thresholds. Usefulness optimization basically chooses

the combination of type 1 and 2 errors on the black curve that maximizes the weighted distance to

the red diagonal (for a discussion of the ROC curve see Drehmann and Juselius (2014)).

Ideally, the distance (and therefore absolute usefulness) should be zero, because explanatory

variables X and events C(h) are unrelated in this speci�cation. However, in practice this is not the

case. For small N , β is estimated to produce an optimal �t. This means that the ROC curve will

be above the diagonal on average (otherwise, the �t would be worse than for coe�cients equal to

zero). In fact, the area under the ROC curve (that is, the AUC) is signi�cantly above 0.5 at the

10% level for the three simulations.

With less observations there is more uncertainty concerning true coe�cients, resulting in a larger

upward bias of the ROC.14 If now, in a second step, the weighted distance of the ROC curve is

14El-Shagi et al. (2013) therefore argue that � in order to judge the quality of an early-warning model � it is
paramount to obtain a distribution of the usefulness under the null hypothesis of no relation between X and C(h),
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Figure 6: ROC curve for three simulations with random events (N=100, 1000, 10'000) from the
probit estimation.
Note: The type 2 error probability is given on the x-axis, (1 - type 1 error probability) on the y-axis. The absolute

usefulness of the model for the drawn number of observations is given in the title.

maximized in order to maximize usefulness, this introduces randomness in thresholds and creates an

over�t. Essentially, threshold optimization chooses the best possible outcome (in-sample) instead

of the most likely possible outcome, which leads to threshold instability, as indicated by the three

substantially di�erent threshold values in the plot.

The distance of the ROC curve to the diagonal, and therefore usefulness of the random model,

decreases strongly with increasing N . This happens because, as N increases, uncertainty on the

true DGP decreases, bringing the ROC curve closer to the diagonal and bringing usefulness closer

towards its true level of zero.

4.2 Simulation setup

Now, let us compare our approaches in a simulation setup where explanatory variables and events

are related, i.e., where the estimation of event probabilities is actually meaningful. We present

the setup of the baseline scenario here. A number of robustness checks are introduced in a later

subsection. In our (simple) simulated data, we use three explanatory variables X = (X1, X2, X3), a

coe�cient vector β = (1, 0, 0) and a negative constant of −1. That is, only X1 contains information

on the latent variable y∗ and therefore the observable event. The constant is chosen such that the

instead of only a measure of usefulness itself.
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probability of an event is slightly below 25%, in-line with usual event frequencies in early-warning

models.

We draw the explanatory variables independently from a standard normal distribution. Every

simulation study is performed with 21 logarithmic-spaced number of observations between N = 100

and N = 10′000. For every N , we draw X, calculate the event probabilities Φ(Xβ) and draw C(h)

from these probabilities (abstracting from index j).15 Drawing events from a normal distribution

means that we simulate data from a probit model. Every simulated dataset is split evenly into an

in-sample and an out-of-sample part.

We then apply the three approaches presented in Section 2 to the in-sample part of the data,

using both probit and logit estimations. That is, for every dataset and policy preference µ, we

construct six di�erent early-warning models. First, a probit with optimized thresholds λ∗. Second,

a weighted probit with threshold λw = 0.5. Third, a probit with �xed thresholds λ∞ = 1− µ. The

fourth, �fth and sixth model are equal to the �rst three, replacing the probit estimation by a logit

estimation. Logit estimations are a simple way to test if the results are robust against an admittedly

very mild form of misspeci�cation. For all models, we calculate the in-sample and out-of-sample

measures of goodness-of-�t de�ned in the previous section. The above steps are performed for the

four di�erent preferences µ = {0.2, 0.5, 0.8, 0.95} already employed in the real-world examples.

Every simulation is performed R times to get a clear picture of the in�uence of sampling un-

certainty. This allows us to provide a measure for the uncertainty of optimized thresholds λ∗, as

well as the size of the in- and out-of-sample bias of usefulness. Furthermore, we can calculate the

probability that the current early-warning model (probit/logit with threshold optimization) is out-

performed by our alternatives. The probabilities of outperformance are bootstrap estimates. That

is, they vary slightly with the number of replications R. To be sure that probabilities of outper-

formance are truly larger than 50% (and not only by chance), one can either choose a very large

number of replications R, or adopt the approach of Davidson and MacKinnon (2000) to select R

endogeneously. We follow the latter approach.

In the following, we will only present results from the baseline speci�cation. Many other spec-

i�cations, as described in in the online appendix, yield both qualitatively and quantitatively very

15This procedure introduces one di�erence to usual early-warning models: there is no continuous chain of events in
an early-warning window of prede�ned length. However, this di�erence is irrelevant from an econometric perspective.
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Figure 7: Mean λ∗ with 90% con�dence bands, for di�erent values of µ.

similar results.

4.3 Variation and limit of optimized thresholds

In this subsection, we analyze the behavior of the optimized threshold λ∗ in our simulation setup.

We are speci�cally interested in the question if λ∗ approaches the long-run optimal threshold λ∞

as N →∞. Figure 7 presents the mean λ∗ together with con�dence bands from R replications for

the di�erent policy preferences µ and di�erent number of observations N . We �rst see that there is

basically no di�erence between probit- and logit-estimations.

As the true DGP is always identical, all uncertainty on λ∗ comes from the estimation uncertainty,

which depends mainly on the number of observations. Therefore, the width of the con�dence bands

of λ∗ does not depend on preferences µ and decreases with N . However, even for a large number of

observations there remains considerable uncertainty. As expected and in line with the mathematical

proof of our second alternative, λ∗ approaches 1− µ as N increases.

4.4 Comparison of out-of-sample performance

This subsection analyzes the out-of-sample performance of the three approaches to threshold setting.

We are particularly interested in the question if the in-sample superiority of the current approach

has negative e�ects on its out-of-sample performance or not.

Under the assumption that data are created by a constant DGP, and that this process can be

captured by the estimated model, in-sample and out-of-sample usefulness should both converge
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Figure 8: Mean relative usefulness of the three probit models.
Note: In-sample (is) usefulness is higher than out-of-sample (oos) usefulness for every number of observations N .

The black line at zero signi�es the boundary below which it is optimal not to use the model.

to the true long-run usefulness of that process. As in-sample models are �tted to the data, we

would expect that in-sample usefulness is higher for a lower number of observations and that it

drops towards a boundary value. This view is con�rmed by Figure 8 for probit models.16 These

�gures show the mean relative usefulness from simulations with di�erent numbers of observations

for the three di�erent approaches. In-sample results are presented in the �rst row of plots, out-of-

sample results in the second row, di�erentiating for di�erent preferences µ. Contrary to in-sample

usefulness, the out-of-sample usefulness improves as N goes to in�nity. The reason is the slow

uncovering of the true DGP, which improves inference from in- to out-of-sample data.

In addition to these general results holding for all estimation methods, we see that the usefulness

(in- and out-of-sample) of our proposals is on average closer to their true limiting value than those

16An alternative way to look at this would be the di�erence of relative usefulness between the benchmark model
and our two proposals, see the online appendix. Similar results for the logit models can also be found there.
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Figure 9: Probability of outperformance of alternative approaches out-of-sample (probit estimations)

of the benchmark models. Concerning in-sample usefulness, this seems to be bad at �rst sight.

However, it has to be acknowledged that one of the main reasons for calculating in-sample usefulness

is an evaluation of the quality of the early-warning model. If there is an upward bias, it induces

an overstated sense of con�dence, trust and security. This bias is much lower for our proposals.

However, what really matters in the early-warning practice is out-of-sample usefulness. Here, our

proposals perform on average better. This holds both for the weighted model and for the ex-ante

threshold setting.

Even though out-of-sample usefulness of our proposals is on average better than that of threshold

optimization, this di�erence is not statistically signi�cant in most cases. By construction, our

proposals produce nearly always worse in-sample usefulness than their threshold peer. Out-of-

sample, our proposals outperform the benchmark in slightly more than 50% of the cases, see Figure

9. Why do our alternatives often outperform the benchmark model only in slightly more than 50%

of the cases, while still providing (on average) sizable higher out-of-sample relative usefulness? The

reason for this is the uncertainty in the DGP that makes threshold optimization prone to variation.

As the innovations in- and out-of-sample are uncorrelated, there is a (roughly) 50% chance that the

out-of-sample innovations would push the optimized threshold in a similar direction as the in-sample

innovations. Therefore, there is a 50% chance that thresholds optimized based on in-sample data

perform (slightly) better for out-of-sample data than the �xed thresholds of our two alternatives.

However, in the other 50% the performance losses are much higher.
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5 Conclusion

The traditional approach for deriving early-warning models relies on a separate ex-post threshold

optimization step. We show in this paper that this ex-post optimization of thresholds is prone

to su�er from estimation uncertainty, resulting in unstable probability thresholds and potentially

reduced out-of-sample usefulness.

We propose two alternative approaches for threshold setting in early-warning models, where

preferences for forecast errors are accounted for by setting thresholds not after, but within or even

before the estimation of early warning probabilities.

Including preferences as estimation weights (resulting in a threshold λw = 0.5) in the early-

warning model outperforms optimized thresholds out-of-sample in the large majority of the cases.

Thus, weighted binary-choice models are a valid alternative to the current approach of threshold

optimization. Moreover, the idea of weighting classes according to preferences is not restricted to

binary-choice or even maximum likelihood methods. As weighting can be implemented by resam-

pling data, our approach can be extended to any classi�cation method employed in the early-warning

literature (Chawla, Japkowicz and Kotcz, 2004). However, weighting comes with two drawbacks:

First, �tted values can only be interpreted as weighted probabilities. Second, introducing weights

into an estimation requires moving away from standard statistical packages.17

Contrary to the two other approaches, the long-run optimal threshold λ∞ = 1−µ is independent

of estimated vulnerabilities and the DGP as a whole. Moreover, λ∗ will approach λ∞ as the true

DGP is uncovered over time, see Figure 7. That is, in case of a correctly speci�ed model, the long-

run optimal threshold will alleviate all challenges to optimized thresholds. However, in comparison

to the two other approaches, the performance of long-run optimal thresholds depends more on the

correct estimation of the true DGP. For example, a DGP with clustered events could easily lead to

biased probability estimates in-sample, which a�ects the performance of long-run optimal thresholds

both in- and out-of-sample.

We �rst compare our two approaches to the current standard of threshold selection ex-post by

looking at two real-world examples. In both these models, we can document a strong variability of

optimized thresholds which is not warranted by the data. For policymakers, variations in thresh-

17An R-package for weighted binary-choice models can be obtained from the authors.
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olds due to uncertainty might be challenging to communicate. How can policies in a country with

unchanged macro-�nancial conditions be implemented only due to a shift in �optimal� λ? Signals

should depend on changes in the vulnerability indicators, not on unjusti�ed (random) variation in

thresholds. But our two proposals do not only imply stable thresholds. A bootstrap analysis shows

us that at least in the case of the model of systemic �nancial crises of Lo Duca and Peltonen (2013),

our approaches on average outperform threshold optimization out-of-sample for nearly all prefer-

ences. Both results are con�rmed by a range of simulation studies, where we sample explanatory

variables and crises from a simple and known data-generating process.

To subsume, we �nd that our two alternative proposals outperform their traditional counterpart

in three ways. First, we eliminate unjusti�ed (random) variation in thresholds and allow hence

all signals to descend purely from variation in probabilities. This supports policy implementation

and communication based upon these models. Second, out-of-sample performance can on average

be improved by our approaches, while the bias on in-sample usefulness is reduced. Third, at least

ex-ante threshold setting is simpler than ex-post threshold optimization, as it forgoes the second

optimization step.

As our results hold not only for the simple binary-choice models tested in this paper, but for every

early-warning model using threshold optimization (including the much-used signaling approach), we

strongly recommend to include policymakers' preferences as weights in the estimated likelihood or

specifying thresholds ex-ante, and thus to move away from threshold optimization in general.
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Appendix: Additional tables and �gures
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Figure A.1: λ variation in recursive analysis with the BP model.
Note: The color scale refers to λ values for each µ and month. The models are estimated in a recursive manner by

using only information available up to each month between 1995:5 and 1996:12.
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Figure A.2: BP model, frequency of pre-crisis periods and variation of λ∗, selected preferences µ.
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